ISSN print edition: 0366-6352
ISSN electronic edition: 1336-9075
Registr. No.: MK SR 9/7

Published monthly
 

Discrete lumping kinetic models for hydrodesulfuration and hydrocracking of a mixture of FCC feedstock and light gasoil

Maricruz Morales-Blancas, Fabián S. Mederos-Nieto, Ignacio Elizalde, J. Felipe Sánchez-Minero, and Fernando Trejo-Zárraga

Instituto Politécnico Nacional, Centro Mexicano para la Producción más Limpia (CMP+L), México City, México

 

E-mail: ielizaldem@gmail.com

Received: 18 October 2021  Accepted: 8 April 2022

Abstract:

The hydrotreating of a mixture of Fluid Catalytic Cracking feedstock (70 wt.%) and light gas oil (30 wt.%) was carried out at 340–380° C, initial pressure of 70 bar, at reaction times of 1 to 4 h in a batch reactor system. Commercial alumina NiMo supported catalyst was used, at 5 g of powder for each 100 g oil. The catalyst particle was 60–70 mesh; and the stirring speed was kept at 750 rpm. The feedstock and products were characterized by Energy-Dispersive X-ray Fluorescence Spectroscopy and simulated distillation to determine the hydrodesulfuration and hydrocracking conversion, respectively. Experimental data were used to estimate the kinetic model parameters for hydrodesulfuration (single lump) and hydrocracking (five lumps), by using power law kinetic models. From the inverse modeling problem solution, the global error was of 0.0054 for hydrodesulfuration, and the reaction order and activation energy were 2.75 and 129.8 kJ/mol, respectively. For hydrocracking, a first order reaction kinetics was employed; the errors were 0.0042, 0.0021 and 0.0030 for reaction temperatures of 340, 360 and 380° C, respectively, while the activation energies ranged between 15.2 and 208.5 kJ/mol, being the largest for the conversion from heavy gasoil to light gas oil.

Keywords: Oil mixture; Hydrodesulfuration; Hydrocracking; Discrete lumping; Power law kinetics

Full paper is available at www.springerlink.com.

DOI: 10.1007/s11696-022-02219-8

 

Chemical Papers 76 (8) 4885–4891 (2022)

Sunday, November 24, 2024

IMPACT FACTOR 2023
2.1
SCImago Journal Rank 2023
0.381
SEARCH
Advanced
VOLUMES
© 2024 Chemical Papers