ISSN print edition: 0366-6352
ISSN electronic edition: 1336-9075
Registr. No.: MK SR 9/7

Published monthly
 

Synthesis of magnetite nanoparticle from potato peel extract: its nanofluid applications and life cycle analysis

Manjakuppam Malika, Prakash G. Jhadav, Vishal R. Parate, and Shriram S. Sonawane

Department of Chemical Engineering, Nano Research Project Laboratory, Visvesvaraya National Institute of Technology, Nagpur, India

 

E-mail: shriramsonawane@gmail.com

Received: 24 June 2022  Accepted: 29 September 2022

Abstract:

Nanoscale magnetite is increasingly being used in various applications, such as heat transfer fluids (e.g., nanofluids), biomedical applications (e.g., diagnostics and therapy [MRI contrasting agents], and so on. As manufacturing demands rise, some thought must be given to the potential environmental consequences of these nanoproducts life cycles. In this regard, a molecular-level life cycle assessment (LCA) can be a useful technique for identifying life cycle hot spots and aiding in the reduction of a technology's burdens while optimizing its benefits. Using standardized level of LCA, this study investigates the environmental effect of adding magnetite nanoparticles in commercially available coolants. We present a detailed examination of magnetite nanofluid’s performance for next-generation heat transfer applications. At 60 °C, 0.05 vol% magnetite nanofluids resulted in a 63% increase in thermal conductivity and a 52% reduction in viscosity. It was shown that such nanofluids had improved dispersion stability and thermophysical characteristics under static conditions. Our findings suggest that by employing green chemistry principles, the environmental consequences of nanomaterials could be minimized. The use of potato skin extracts and Na2CO3 as chelating and precipitating agents, respectively, reduced the environmental impact of magnetite production compared to the commercially produced nanoparticle. Finally, a life cycle analysis study found that the viscosity and method of preparation of such nanofluids must be addressed to reduce an environment effect.

Graphical Abstract

Keywords: Life cycle assessment; Nanofluid; Magnetite; Circular economy; Thermophysical properties

Full paper is available at www.springerlink.com.

DOI: 10.1007/s11696-022-02538-w

 

Chemical Papers 77 (2) 1081–1094 (2023)

Sunday, November 24, 2024

IMPACT FACTOR 2023
2.1
SCImago Journal Rank 2023
0.381
SEARCH
Advanced
VOLUMES
© 2024 Chemical Papers