CdOZn3(PO4)2 has excellent optical and magnetic properties and is a promising composite and has remarkable characteristics of suitable transition metal ion doping, and it is an effective method to improve semiconductor characteristics. In this work, Cu2+-ion-doped CdOZn3(PO4)2 hybrid composite material was well synthesized using elementary co-precipitation method. The FT-IR technology used to obtain the infrared spectrum of absorption or emission of solids, liquids or gases confirms the presence of PO43− groups and P–O vibrational bands. X-ray diffraction is an analytical technique based on the scattering of X-rays by matter that doped the host lattice that doped the Cu2+ ion, and the calculated average crystalline size was ~ 36 nm. Scanning electron microscopy and energy dissipative X-ray spectroscopy allow for objective analysis of sample surfaces. UV/Vis spectroscopy is commonly used in analytical chemistry for quantitative determination of different analyses or samples such as transition metal ions. PL studies have identified white light emissions and EPR and optical investigation, requiring the use of an octahedral site structure with dopant (Cu2+) ions host material. From the CIE chromaticity diagram, it appears that the hybrid composite is displayed near the cold light emitter.
Graphical abstract
Keywords: n-Type semiconductor; 3d transition metal ions; Crystalline materials; CdOZn3(PO4)2; Monoclinic