ISSN print edition: 0366-6352
ISSN electronic edition: 1336-9075
Registr. No.: MK SR 9/7

Published monthly
 

Antimicrobial and anti-biofilm activities of photosynthesized Ag@TiO2 and Ag@N-TiO2 nanocomposites against clinically isolated multidrug resistance Klebsiella pneumoniae

Alif Firman Firdausy, Liszulfah Roza, Mohammad Mansoob Khan, and Abdul Wafi

Department of Pharmacy, Faculty of Medicine and Health Science, Universitas Islam Negeri Maulana Malik Ibrahim, Malang, Indonesia

 

E-mail: aliffirman.firdausy@uin-malang.ac.id

Received: 27 February 2024  Accepted: 13 October 2024

Abstract:

The rise of drug-resistant bacterial strains is escalating due to the ability to produce biofilms shielding bacteria from antimicrobial agents. Consequently, novel approaches are imperative for managing biofilm-related infections in healthcare settings. Silver-based nanoparticles have revealed potential antimicrobial characteristics against various bacteria. In the present work, silver-modified TiO2 (Ag@TiO2) and silver-modified/N-doped TiO2 (Ag@N-TiO2) nanocomposites were synthesized using the sol–gel and photochemical deposition under UV light illumination. FTIR, XRD, and DRS were performed to characterize the vibrational, structural, and optical properties of the synthesized materials, respectively. In addition, FE-SEM and EDX analysis were also utilized to determine the surface morphology, particle size, and elemental composition of the prepared materials. Furthermore, the synthesized Ag@TiO2 and Ag@N-TiO2 nanocomposites were explored and compared for antimicrobial and anti-biofilm agents against clinically isolated multidrug-resistant (MDR) Klebsiella pneumoniae (K. pneumoniae) on the silicone rubber as a urinary catheter material in the medical devices. The results showed that both Ag@TiO2 and Ag@N-TiO2 composites exhibited antimicrobial activities compared to negative control. The Ag−3@TiO2 composite possessed a highest inhibition zone (77.29%) against MDR K. pneumoniae. In addition, anti-biofilm assay through the crystal violet method showed that Ag−1@TiO2 revealed an optimum inhibition (54.20%) compared to other samples. In conclusion, Ag@TiO2 and Ag@N-TiO2 nanocomposites have exhibited promising antimicrobial and anti-biofilm agents in medical devices, providing an effective inhibition toward the bacterial growth and biofilm formation of MDR K. pneumoniae.

Keywords: Antimicrobial; Anti-biofilm; Multidrug-resistant; Klebsiella pneumonia; Silver-doped TiO2; Silver/nitrogen co-doped TiO2

Full paper is available at www.springerlink.com.

DOI: 10.1007/s11696-024-03737-3

 

Chemical Papers 78 (17) 9191–9203 (2024)

Thursday, December 26, 2024

IMPACT FACTOR 2023
2.1
SCImago Journal Rank 2023
0.381
SEARCH
Advanced
VOLUMES
© 2024 Chemical Papers