Phasendiagramm des Dreistoffsystems Li₃AlF₆—LiF—CaF₂*

J. VRBENSKÁ, M. MALINOVSKÝ

Lehrstuhl für Elektrotechnologie and der Slowakischen Technischen Hochschule, Bratislava

Lehrstuhl für anorganische Technologie an der Slowakischen Technischen Hochschule, Bratislava

Mit der Methode der thermischen Analyse und der Röntgenphasenanalyse wurden die Phasendiagramme der Systeme Li₃AlF₆—LiF und Li₃AlF₆—CaF₂ überprüft und das Phasendiagramm des Dreistoffsystems Li₃AlF₆—LiF—CaF₂ konstruiert. Dabei wurde vor allem die Erforschung der Liquidusgebiete von Li₃AlF₆ und von LiF als Ziel gestellt. Es handelt sich um ein System mit einem einfachen Eutektikum von der Zusammensetzung 25 Mol% Li₃AlF₆, 52 Mol% LiF und 23 Mol% CaF₂. Die Temperatur der eutektischen Kristallisation beträgt 665 °C.

Die experimentellen Ergebnisse wurden mit den, aus thermodynamischen Berechnungen gewonnenen Angaben verglichen. Die nach dem Temkinschen Ionenmodell erhaltenen Werte ergaben eine befriedigende Übereinstimmung mit den Versuchswerten.

Das studierte System ist von drei Zweistoffsystemen begrenzt: vom System $\text{Li}_3\text{A!F}_6$ —LiF, welches einen Teil des Systems L F—A·F $_3$ bildet, weiter vom System $\text{Li}_3\text{A!F}_6$ —CaF $_2$ und zuletzt vom System L F—CaF $_2$. Das erstgenannte und das letzte von diesen wurden schon mehrmals überprüft [1—6]; die veröffentlichten Ergebnisse dieser Studien sind in den Tab. 1 und 2 zusammengefaßt. Das zweite System wurde von Autoren dieser Arbeit im Bereich von 0—60 Mol% CaF $_2$ studiert [7]. Es wurde gefunden, daß dieses, ähnlich wie die zwei obengenannten Systeme ein einfaches Eutektikum von der Zusammensetzung 56,5 Mol% $\text{Li}_3\text{A!F}_6$ und 43,5 Mol% CaF_2 bildet. Die Temperatur der eutektischen Kristallisation beträgt hier 703 °C.

 $\label{lem:condinate} Tabelle~1$ Koordinaten des eutektischen Punktes des einfachen eutektischen Systems Li_3AlF_6—LiF laut verschiedener Autoren

Temperatur des Eutektikums,	Zusammense Eutektikun	Literatur		
°C	Li ₃ AlF ₆	LiF		
715	715 24,1		[5]	
706	33	67	[6]	
715	29,3	70,7	[7]	

^{*} Vorgetragen auf dem I. tschechoslowakischen Symposium über die Problematik der Aluminiumerzeugung, in Smolenice, ČSSR, am 7.—9. Juni 1966.

Das Phasendiagramm des ternären Systems Li₃AlF₆—LiF—CaF₂ wurde bisher nicht veröffentlicht.

Tabelle 2

Koordinaten des eutektischen Punktes des einfachen eutektischen Systems LiF—CaF₂ laut verschiedener Autoren

Temperatur des Eutektikums, °C	Zusammen: Eutektiku	Literatur	
	LiF	'CaF ₂	
765	79	21	[1]
765	86	14	[2]
766	80,5	19,5	[4]
766	79,5	20,5	[5]

Experimenteller Teil

Für die Konstruktion des behandelten Systems wurde dieselbe experimentelle Methode angewandt wie in der Arbeit [7], d. h. durch Röntgenphasenanalyse ergänzte thermische Analyse. Auch die verwendeten Chemikalien, das LiF, das AlF₃ und das CaF₃ waren derselben Herkunft. Das Lithiumkryolith wurde synthetisch aus entsprechenden Mengen LiF und AlF₃ hergestellt.

Vor allem wurden die binären Grenzsysteme überprüft. Das System Li₃AlF₆—LiF wurde im ganzen Gebiet der Zusammensetzungen in 10 Mol%-igen Intervallen gemessen und eine gute Übereinstimmung mit den Versuchswerten gefunden. Im System LiF—CaF₂ wurden die Punkte 10, 20 und 30 Mol% CaF₂ überprüft und auch hier eine befriedigende Übereinstimmung mit den in der Arbeit [8] veröffentlichten Werten erhalten. Angaben über das System Li₃AlF₆—CaF₂ wurden aus der Arbeit [7] übernommen.

Für das Studium des Phasendiagramms des Dreistoffsystems wurden einfache (polythermische) Schnitte II. Ordnung gewählt [9], die ein gleichmäßiges Durchforschen der ganzen Fläche des Konzentrationsdreiecks gestatten. An die Schnittpunkte einzelner Schnitte wurden die figurativen Punkte der studierten Gemische versetzt. Diese Methode

Abb. 1. Phasendiagramm
des Dreistoffsystems
Li₃AlF₆—LiF—CaF₂.
Projektion auf das Konzentrationsdreieck
mit eingetragenen Isothermen.

der Wahl der figurativen Punkte gestattet eine dreifache Kontrolle aller Ergebnisse, da jeder Punkt gleichzeitig dreien — mit den Seiten des Konzentrationsdreiecks parallelen — Schnitten angehört. Im Inneren des Konzentrationsdreiecks wurden 53 ternäre Gemische gemessen, die an 15 polythermischen Schnitten lagen. Gebiete, in denen die Temperatur der primären Kristallisation oberhalb 900 °C lag, wurden nicht geprüft, da sie aus praktischen Gesichtspunkten bis nun keine Bedeutung haben. Anhand gemessener Ergebnisse wurde das Phasendiagramm des behandelten Systems konstruiert (Abb. 1).

Zur Überprüfung der Reproduzierbarkeit und der Genauigkeit der thermischen Analyse wurden die Abkühlungskurven einiger Gemische dreimal hintereinander aufgenommen und nachher mit den an neuer Einwaage gewonnenen Abkühlungskurven verglichen. Die Ergebnisse dieser Teste sind in Tab. 3 wiedergegeben.

Tabelle 3
Überprüfung der Reproduzierbarkeit der Methode der TA bei Dreistoffgemischen Li_xAlF₆—LiF—CaF₂

f Zusammensetzung $f Mol%$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		40 % LiF, 50 % Li ₃ AlF ₆ , 10 % CaF ₂					
Folge der Messungen	°C erste	°C zweite	°C dritte	neue Ein- waage	°C erste	°C zweite	°C dritte	neue Ein- waage
Primäre Kristallisation	727	728	727	729	746	745	745	745
Sekundäre Kristallisation	701	702	702	702	672	672	673	675
Ternäre Kristallisation	663	663	663	665	665	665	665	663

Einige Proben wurden einer Röntgenphasenanalyse unterworfen. Außer schwachen Linien von Al₂O₃ wurden nur die charakteristischen Linien der Komponenten Li₃AlF₆, LiF und CaF₂ erhalten, welche Tatsache mit der chemischen Analyse der angewandten Chemikalien im Einklang ist. Es wurden im System weder feste Lösungen, noch chemische Verbindungen gefunden. Das ternäre System Li₃AlF₆—LiF—CaF₂ bildet daher ein einfaches eutektisches System mit folgender Zusammensetzung des ternären eutektischen Punktes: 25 Mol% Li₃AlF₆, 52 Mol% LiF und 23 Mol% CaF₂. Die Temperatur der eutektischen Kristallisation wurde mit 665 °C bestimmt.

Berechnung des Liquidus des Dreistoffsystems

Ähnlich wie in der Arbeit [7] wurde die Berechnung des Liquidusdiagramms anhand zweier Gleichungen durchgeführt: einerseits anhand der Schröder—Le Chatelierschen Beziehung:

$$\log X_i = \frac{\Delta H_i^t}{2,303 R} \left[\frac{1}{T_i^t} - \frac{1}{T_i} \right] \tag{1}$$

anderseits anhand des Temkinschen Ionenmodells:

$$\log \left[X_{\mathbf{M}^{z+}}^{t} \cdot X_{\mathbf{A}^{z-}}^{u} \right] = \frac{\Delta H_{i}^{t}}{2,303 \ \mathbf{R}} \left[\frac{1}{T_{i}^{t}} - \frac{1}{T_{i}} \right]$$
 (2)

(Die Bedeutung der Symbole ist in der Arbeit [7] erörtert.) Im Falle des Dreistoffsystems Li₃AlF₆—LiF—CaF₂ gelten die Beziehungen:

$$\log \left[X_{\text{Li}^{+}}^{3} \cdot X_{\text{AlF}_{\bullet}^{3}^{-}} \right] = \frac{\Delta H_{\text{Li}_{3}\text{AlF}_{\bullet}}^{t}}{2,303 \, \mathbf{R}} \left[\frac{1}{T_{\text{Li}_{3}\text{AlF}_{\bullet}}^{t}} - \frac{1}{T_{\text{Li}_{3}\text{AlF}_{\bullet}}} \right], \tag{3a}$$

$$\log \left[X_{\rm Li+} \, . \, X_{\rm F^-} \right] = \frac{\varDelta H_{\rm LiF}^t}{2{,}303 \; {\it R}} \left[\frac{1}{T_{\rm LiF}^t} - \frac{1}{T_{\rm LiF}} \right], \tag{3b}$$

$$\log \left[X_{\text{Ca}^2+} \cdot X_{\text{F}^-}^2 \right] = \frac{\Delta H_{\text{CaF}_2}^l}{2,303 \ R} \left[\frac{1}{T_{\text{CaF}_2}^l} - \frac{1}{T_{\text{CaF}_2}} \right]. \tag{3c}$$

In den obigen Gleichungen (3a-3c) bedeutet T_i die Temperatur der primären Kristallisation der i-ten Komponente.

Für die in den Gleichungen (3a-3c) auftretenden Molenbrüche der Ionen gelten die Beziehungen:

$$X_{\rm Li+} = \frac{3p+r}{3p+q+r}, \qquad X_{\rm AlF_6^{3-}} = \frac{p}{p+2q+r}, \qquad (4a, b)$$

$$X_{\text{Ca2+}} = \frac{q}{3p+q+r}, \quad X_{\text{F}} = \frac{2q+r}{p+2q+r},$$
 (5a, b)

wo p, q und r die Molenbrüche der Komponenten Li_3AlF_6 , CaF_2 und LiF bedeuten.

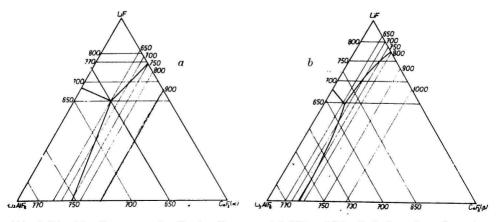


Abb. 2. Liquidusdiagramm des Dreistoffsystems Li₃AlF₆—LiF—CaF₂ berechnet laut der Schröder—Le Chatelierschen Gleichung.

a) $\Delta H_{\text{CaF}_2}^t = 7.1 \text{ kcal Mol}^{-1}$; b) $\Delta H_{\text{CaF}_2}^t = 10.0 \text{ kcal Mol}^{-1}$.

Die Konstruktion des Liquidusdiagramms des ternären Systems laut den Gleichungen (1) beziehungsweise (2) gestaltet sich am einfachsten, wenn zuerst die Liquiduslinien aller drei Zweistoffsysteme berechnet werden; durch Verbindung entsprechender Punkte werden dann die Isothermen in Form von Geraden erhalten. Diese sind im Falle der Schröder—Le Chatelierschen Gleichung alle zueinander — und zu einer Seite des Konzentrationsdreiecks — parallel. Laut dem Temkinschen Ionenmodell werden keine Parallelen erhalten. Die Kurven des monovarianten Gleichgewichtes, die einem Dreiphasen-Gleichgewicht entsprechen (zwei Solidusphasen + eine Liquidusphase) werden als Verbindungslinien entsprechender Isothermen erhalten, die zwei verschiedenen Gebieten angehören. Im gemeinsamen Schnittpunkte dreier monovarianten Gleichgewichten entsprechenden Linien, befindet sich der ternäre eutektische Punkt.

Bei den Berechnungen wurden folgende Werte eingesetzt: $T^t_{\text{Li},\text{AlF}_6} = 782\,^{\circ}\text{C}$, $\Delta H^t_{\text{Li},\text{AlF}_4} = 20,5$ keal Mol⁻¹ für Li₃AlF₆; $T^t_{\text{CaF}_2} = 1410\,^{\circ}\text{C}$, $\Delta H^t_{\text{CaF}_4} = 7,1$ und 10,0 keal Mol⁻¹ für CaF₂; für LiF wird in Tabellen [10] $T^t_{\text{LiF}} = 845\,^{\circ}\text{C}$, $\Delta H^t_{\text{LiF}} = 2,4$ keal Mol⁻¹ angegeben. Dagegen empfehlen T. B. Douglas und J. L. Dever [11] die Werte $T^t_{\text{LiF}} = 848,1\,^{\circ}\text{C}$ und $\Delta H^t_{\text{LiF}} = 6,471$ keal Mol⁻¹. Diese Angaben stimmen im Schmelzpunkte gut überein, unterscheiden sich aber grundsätzlich im Werte des ΔH^t_{LiF} . Die Ergebnisse der Arbeit [12] zeigten, daß der Wert ΔH^t_{LiF} laut T. B. Douglas und J. L. Dever [11] bevorzugt werden soll. Laut einiger Messungen schmilzt das LiF bei 847 °C. Für die Berechnung haben wir daher die Werte $T^t_{\text{LiF}} = 847\,^{\circ}\text{C}$ und $\Delta H^t_{\text{LiF}} = 6,471$ keal Mol⁻¹ angenommen. Die anhand der Gleichungen (1) und (2)

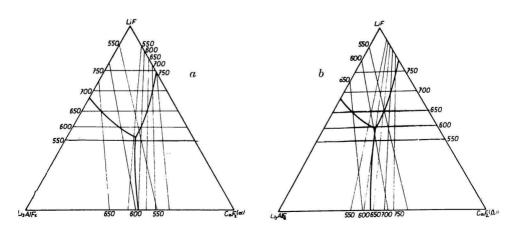


Abb. 3. Liquidus diagramm des Dreistoffsystems Li_3AlF_6 —LiF— CaF_2 berechnet nach dem Temkinschen Ionen modell.

a) $\Delta H_{\text{CaF}_2}^t = 7.1 \text{ kcal Mol}^{-1}$; b) $\Delta H_{\text{CaF}_2}^t = 10.0 \text{ kcal Mol}^{-1}$.

berechneten Liquidusdiagramme des Dreistoffsystems sind in den Abb. 2 und 3 wiedergegeben.

Beim Vergleich berechneter und gemessener Liquidusgebiete sowohl binärer Systeme als auch der Systeme höherer Ordnung kommen zwei Hauptkriterien in Betracht:

- a) Konzentrationsangaben,
- b) Temperaturangaben.

Es scheint vorteilhaft das erste der beiden Kriterien zu begünstigen. Es ist nämlich bekannt, daß die in der Praxis benützten Elektrolyte eine niedrigere Temperatur der primären Kristallisation aufweisen als die aus reinen Chemikalien synthetisierten Elektrolyte. Demgegenüber stimmen oft die Zusammensetzungen der Eutektika technischer und labormäßig reiner mehrkomponenter Elektrolyte befriedigend überein. Die berechneten und gemessenen Werte für die begrenzenden Zweistoffsysteme sind in Tab. 4 zusammengestellt.

Die Kontrolle der Übereinstimmung berechneter Werte mit den Versuchsergebnissen wurde beim Dreistoffsystem Li₃AlF₆—LiF—CaF₂ durch einen Vergleich der Gebiete der primären Kristallisation einzelner Komponenten durchgeführt.

Zwei Diagramme, bei denen die beste Übereinstimmung erhalten wurde

 ${\bf Tabelle~4}$ Berechnete und gemessene Koordinaten eutektischer Punkte der binären Grenzsysteme

	Koordinaten eutektischer Punkte				
System	Berechnet laut	Berechnet laut der Gleichung von			
	Schröder	Temkin	Angaben		
Li ₃ AlF ₆ —LiF	680 °C 62 % Li ₃ AlF ₆ 38 % LiF	680 °C 62 % Li ₃ AlF ₆ 38 % LiF	715 °C 70 % Li ₃ AlF ₆ 30 % LiF		
LiF—CaF ₂	a) 750 °C 75 % LiF 25 % CaF ₂ b) 780 °C 83 % LiF 17 % CaF ₂	a) 750 °C 75 % LiF 25 % CaF ₂ b) 780 °C 83 % LiF 17 % CaF ₂	715 °C 79 % LiF 21 % CaF ₂		
Li ₃ AlF ₆ —CaF ₂	a) 750 °C 74 % Li ₃ AlF ₆ 26 % CaF ₂ b) 765 °C 84 % Li ₃ AlF ₆ 16 % CaF ₂	a) 595 °C 46 % Li ₃ AlF ₆ 54 % CaF ₂ b) 635 °C 55 % Li ₃ AlF ₆ 45 % CaF ₂	703 °C 56 % Li ₃ AlF ₆ 43 % CaF ₂		

Bemerkung: Zusammensetzungen sind in Mol% angegeben.

a) $\Delta H_{\text{CaF}_2}^t = 7.1 \text{ kcal Mol}^{-1}$; b) $\Delta H_{\text{CaF}_2}^t = 10.0 \text{ kcal Mol}^{-1}$.

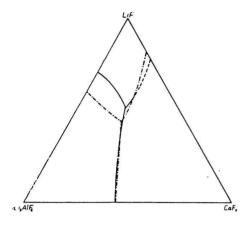


Abb. 4. Vergleich theoretischer (—.—.)
und experimenteller (———)
Ergebnisse.

Tabelle 5
Berechnete und gemessene Koordinaten des ternären eutektischen Punktes des Systems $\text{Li}_3 \text{AlF}_6 \text{--LiF}\text{--CaF}_2$

Koordinaten des ternärer	eutektischen Punktes
Berechnet laut dem	experimentell
Temkinschen Ionenmodell	bestimmt
600 °C	665 °C
31 % Li ₃ AlF ₆	25 % Li ₃ AlF ₆
25 % CaF ₂	23 % CaF ₂
44 % LiF	52 % LiF

sind in Abb. 4 dargestellt. Die Zusammensetzung der ternären eutektischen Punkte ist in Tab. 5 zu sehen. Die unter der Annahme von $\Delta H_{\text{CaF}}^t = 10.0$ kcal Mol⁻¹ berechnete Zusammensetzung des ternären eutektischen Punktes zeigt eine relativ gute Übereinstimmung mit den experimentellen Ergebnissen; die maximale Differenz der Konzentrationswerte wurde bei LiF gefunden (8 %), die minimale Abweichung bei CaF₂ (2 %). Die Abweichung der Temperatur beträgt 65 °C d. h. 10 %.

Die Autoren möchten an dieser Stelle Frau RNDr. I. Čakajdová, CSc., aus dem Institut für anorganische Chemie der SAV für die freundliche Durchführung der Röntgenphasenanalysen danken.

FÁZOVÝ DIAGRAM TERNÁRNEJ SÚSTAVY $\rm Li_3AlF_6_LiF_CaF_2$

J. Vrbenská, M. Malinovský

Katedra elektrotechnológie a Katedra anorganickej technológie Slovenskej vysokej školy technickej, Bratislava

Metódou termickej analýzy a röntgenovou fázovou analýzou sa preverili fázové diagramy sústav Li₃AlF₆—LiF a Li₃AlF₆—CaF₂ a skonštruoval sa fázový diagram ternárnej sústavy Li₃AlF₆—LiF—CaF₂ so zameraním na oblasť primárnej kryštalizácie Li₃AlF₆ a LiF. Ide o systém s jednoduchým eutektikom o zložení 25 % mol. Li₃AlF₆, 52 % mol. LiF a 23 % mol. CaF₂ a teplote eutektickej kryštalizácie 665 °C.

Experimentálne výsledky sa konfrontovali s údajmi zistenými na základe termodynamických výpočtov. Výsledky získané podľa Temkinovho modelu sa uspokojivo zhodujú s experimentom.

ДИАГРАММА СОСТОЯНИЯ ТРОЙНОЙ СИСТЕМЫ Li₃AlF₆—LiF—CaF₂ Я. Врбенска, М. Малиновский

Кафедра электротехнологии и Кафедра неорганической технологии Словацкого политехнического института, Братислава

Методом термического анализа и рентгенографическим фазовым анализом были проверены диаграммы состояния систем ${\rm Li_3AlF_6-LiF}$ и ${\rm Li_3AlF_6-LiF}$ и ${\rm Li_3AlF_6-LiF}$ и построена диаграмма состояния тройной системы ${\rm Li_3AlF_6-LiF-CaF_2}$, причом главное внимание уделялось области первичной кристаллизации ${\rm Li_3AlF_6}$ и ${\rm LiF}$. Найдено, что это простая эвтектическая система с эвтектикой состава 25 % (мол.) ${\rm Li_3AlF_6}$, 52 % (мол.) ${\rm LiF}$ и 23 % (мол.) ${\rm CaF_2}$; температура эвтектической кристаллизации 665°.

Экспериментальные данные сравнивались с результатами термодинамических расчетов. Данные полученные по теории Темкина хорошо совпадают с экспериментом.

Preložil M. Malinovský

LITERATUR

- 1. Ruff O., Busch W., Z. anorg. allgem. Chem. 114, 87 (1925); beruft sich auf [3].
- Buchalova G. A., Bergman A. G., Ber. Akad. Wis. USSR 66, 67 (1947); beruft sich auf [3].
- Landolt—Börnstein, Zahlenwerte und Funktionen aus Physik, Chemie und Technik,
 Aufl., VI. Bd., 2. Teil. Springer-Verlag, Berlin 1956.
- 4. Buchalova G. A., Berežneva V. T., Ž. neorg. chim. 6, 1049 (1957).
- 5. Fedotieff P. P., Timofeeff G. A., Z. anorg. allgem. Chem. 206, 263 (1932); beruft sich auf [3].
- 6. Dergunov E. P., Dokl. Akad. nauk SSSR 60, 1185 (1948).
- 7. Malinovský M., Vrbenská J., Chem. zvesti 21, 806 (1967).
- 8. Roake W. E., J. Electrochem. Soc. 104, 661 (1957).
- 9. Malinovský M., Matiašovský K., Kubík C., Chem. zvesti 15, 617 (1961).
- Selected Values of Chemical Thermodynamic Properties I. Natl. Bureau of Standards, Reprint July 20, 1961.
- 11. Douglas T. B., Dever J. L., J. Am. Chem. Soc. 76, 4826 (1954).
- 12. Malinovský M., Čakajdová I., Matiašovský K., Chem. zvesti 21, 794 (1967).

Adresse der Autoren:

Ing. Jaroslava Vrbenská, CSc., Katedra elektrotechnológie SVŠT, Bratislava, Mýtna 1b. Doz. Ing. Milan Malinovský, CSc., Katedra anorganickej technológie SVŠT, Bratislava, Jánska 1.