Mass Spectrometry of Some Unsaturated Monosaccharides and Their Peracetyl Derivatives

V. KOVÁČIK, V. BÍLIK and Š. KUČÁR

Institute of Chemistry, Slovak Academy of Sciences, Bratislava 9

Received August 28, 1969

The fragmentation of D-arabinal, D-xylal, D-galactal, D-glucal, ethyl--2,3-dideoxy- α ,D-erythro-hex-2-enopyranoside, their O-deuterated analogues and peracetyl derivatives was studied. The fragmentation of free and peracetylated 1,2-unsaturated monosaccharides differs significantly from that of ethyl-2,3-dideoxy- α ,D-erythro-hex-2-enopyranoside and its peracetyl derivative. Characteristic differences were found when comparing quantitatively the spectra of stereoisomers of 1,2-unsaturated monosaccharides with hydroxy or acetyl groups in cis and trans position at carbon atoms C₃ and C₄. Fragmentation mechanisms of the studied compounds are suggested and discussed in this paper.

Some peracetyl derivatives of 1,2- and 2,3-unsaturated hexopyranosides [1] and also D-glucal [2] were investigated by mass spectrometry. This paper deals with the fragmentation of 1,2-unsaturated pentopyranoses and some unsaturated hexopyranoses and their peracetyl derivatives, as well. Recorded and interpreted were spectra of substances as listed in Table 1 and also spectra of O-deuterated compounds V-VIII and X (Va, VIa, VIIa, VIIIa, Xa).

Nr.	Compound	М.р.	$[lpha]_{\mathbf{D}}^{24}$	c; Solvent	Ref.	
 T	3,4-di-0-acetyl-D-arabinal		+263.5	1.5; CHCl.	[3]	
Ĩ	3,4-di-O-acetyl-D-xylal		-315.0	1.2; CHCl,	[4] Vol. 1, p. 184	
III	3,4,6-tri-O-acetyl-D-galactal	28 - 30	-12.1	1.3; CHCl ₃	[4] Vol. 2, p. 457	
IV	3,4,6-tri-O-acetyl-D-glucal	54 - 55	- 15.4	1.5; C.H.OH	[4] Vol. 2, p. 406	
V	D-arabinal	80 - 82		2.0; H ₀ O	[3]	
VI	D-xylal		-245.4	2.0; H ₂ O	[4] Vol. 2, p. 184	
VII	D-galactal	98 - 100	- 6.6	2.0; H ₂ O	[4] Vol. 2, p. 457	
VIII	D-glucal	57 - 60	- 8.0	2.0; H ₂ O	[4] Vol. 2, p. 406	
IX	ethyl-4,6-di-O-acetyl-2,3-dideoxy- -α,D-erythro-hex-2-enopyranoside	80 - 82	+103.0	$1.5; C_6H_6$	[5]	
X	ethyl-2,3-dideoxy-a,D-erythro-hex- -2-enopyranoside	101	+100.1	$1.5; \mathrm{C_2H_5OH}$	[5]	

Table 1

Experimental

Compounds for measuring mass spectra were prepared according to literature given in Table 1. Mass spectra were taken with a MCh 1306 apparatus (U.S.S.R.) adapted for a direct introduction of samples into the ionization chamber at the ionizing electron energy 70 eV. Temperature in the vaporization locus $20-30^{\circ}$ C, temperature in the ionization chamber 100° C.

Deuterization of compounds V, VI, VII, VIII, X was carried out directly in the mass spectrometer by evaporation of D₂O from the solutions of samples. The achieved degree of deuterization of substances Va, VIa, VIIa, VIIIa, Xa was found to be 94, 92, 89, 91, 85%, respectively.

Results and Discussion

Fragmentation of both 3,4-di-O-acetyl-D-arabinal (I) and 3,4-di-O-acetyl-D-xylal (II) shows qualitatively the same pattern and is exemplified with substance I (Fig. 1) in Scheme 1. The decomposition of the molecular ions follows three pathways. The loss of the radical •OAc from carbon atom C₃ initiates series A; the next step is the expulsion of the molecule of acetic acid. Series B is triggered by the stepwise elimination of acetic acid, ketene and hydrogen atom. The decomposition of the pyranoid ring affords ions of series C at m/e 157 (this mechanism is discussed later) which, after the loss of two molecules of ketene led to ions at m/e 115 and 73.

Mass spectra of 3,4,6-tri-O-acetyl-D-galactal (III) and 3,4,6-tri-O-acetyl-D-glucal (IV) are qualitatively consistent with that of compound IV as reported earlier [1] excepting that little abundant ions $(M - \cdot OAc)^+$ at m/e 213 and $(M - \cdot OAc - AcOH)^+$ at m/e 153 belonging to series A were found in our spectra.

When comparing mass spectra of pairs of stereoisomers I + II and III + IV it becomes evident that peaks of ions of series A and B (and also series beginning with the loss of radical •CH₂OAc from hexopyranosides) are of the same intensity. On the other hand, peaks of ions of series C (Table 2) are approximately twice to three times higher in compounds I + III (cis position of acetyl groups at O_a and C_4) than in

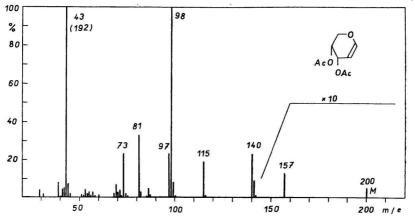
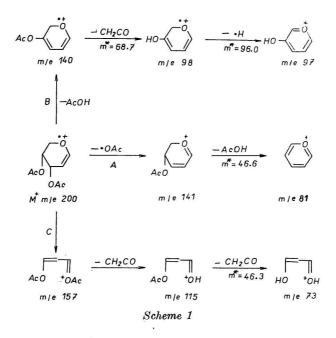



Fig. 1. Mass spectrum of 3,4-di-O-acetyl-D-arabinal (I).

those of II + IV (trans position of acetyl groups at C₃ and C₄). It is possible to make use of this phenomenon to distinguish stereoisomers of peracetyl derivatives of 1,2-unsaturated pyranosides.

i	21	n	ab	1.	0
	1	1	a v	ie	4

i.

Compound	Position of OAc at C ₃	Rela	Relative intensities of peaks at		
compound	and C_4	m/e 157	m/e 115	m/e 73	
I	cis	1.1	19.5	23.4	
II	trans	0.4	8.1	11.8	
III	cis	0.9	17.6	15.9	
IV	trans	0.3	7.8	7.1	

Whereas the decomposition of peracetylated 1,2-unsaturated pentopyranoses I and II preponderantly follows series B, that of D-arabinal (V) (Fig. 2) and D-xylal (VI) proceeds almost exclusively according to series C. Thus ions at m/e 73 (75 in the spectra of O-deuterated compounds Va, VIa) ($m^* = 46.0$; $116 \rightarrow 73$) are formed from molecular ions. A faint fragmentation of series A and B is seen in the little pronounced peaks of ions (M - OH)⁺ at m/e 99 (100), ($M - OH - H_2O$)⁺ at m/e 81 (81) and ($M - H_2O$)⁺ at m/e 98 (99).

D-Galactal (VII) and D-glucal (VIII) (Fig. 3) reveal, likewise substances V and VI, a dominant formation of ions at m/e 73 (75) ($m^* = 36.5$; $146 \rightarrow 73$). Of other

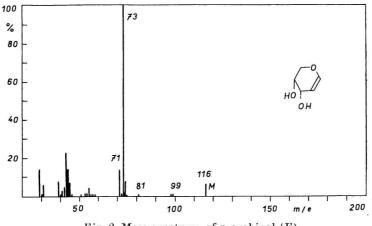


Fig. 2. Mass spectrum of D-arabinal (V).

series, there are little abundant peaks of ions $(M - \cdot OH)^+$ at m/e 129 (131), $(M - H_2O)^+$ at m/e 128 (130), $(M - \cdot CH_2OH)^+$ at m/e 115 (117) and $(M - \cdot CH_2OH - H_2O)^+$ at m/e 97 (98) in their spectra.

A higher stability of isomers possessing the *trans* configuration of hydroxyl groups at carbons C₃ and C₄ has been observed when comparing the relative intensity of molecular ions. Thus the relative intensity of pairs of isomers was found to be 6.6%

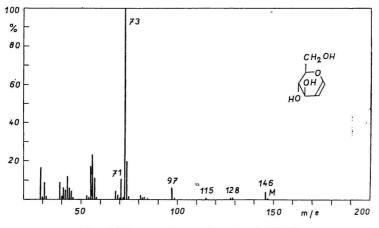


Fig. 3. Mass spectrum of D-glucal (VIII).

and 11.5% with D-arabinal and D-xylal and 2.1% and 4.0% with D-galactal and D-glucal. When omitting the slight fragmentation according to series A and B (and also the loss of •CH₂OH radicals from hexopyranoses) one can see that ions at m/e 73 (75) are generated twice as easy in cis C₃, C₄ hydroxy isomers. This finding is in accordance with observations made with peracetylated derivatives of I-IV (Table 2).

Mechanism of fragmentation of series C

Arguments concerning structure and formation of C series ions at m/e 73 from 1,2-unsaturated pyranoses and those at m/e 157, 115 and 73 of their peracetylated derivatives can be summarized as follows:

a) From the same m/e values of 1,2-unsaturated hexopyranoses and 1,2-unsaturated pentopyranoses it is deduced that ions under discussion do not contain substituent at C_5 .

b) Deuterization analysis of 1,2-unsaturated pyranoses and ions at m/e 157, 115 and 73 in the spectra of their peracetylated derivatives evidences the presence of hydroxy or acetoxy group from carbon atoms C₃ and C₄ in the ions under discussion.

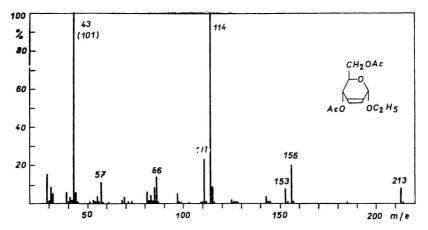
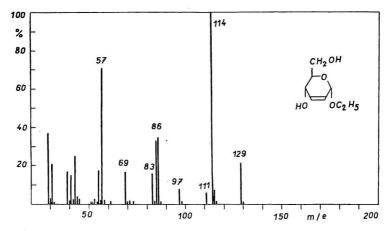
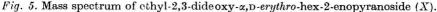




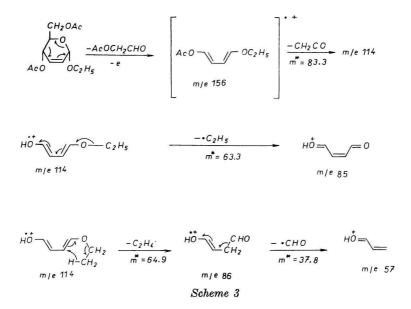
Fig. 4. Mass spectrum of ethyl-4,6-di-O-acetyl-2,3-dideoxy- $-\alpha$,D-erythro-hex-2-enopyranoside (IX).

c) The presence of metastables for transition $M \rightarrow 73$ in the spectra of compounds V - VIII proves their one-step formation from the molecular ions.

d) The fragmentation of 1,2-unsaturated pyranoses and their peracetylated derivatives was found to proceed more intensively with *cis*-oriented hydroxy or acetoxy groups at carbons C_3 and C_4 .

e) Ions of series C are not formed from 2,3-unsaturated pyranosides upon electron impact (Figs. 4 and 5).

The above-mentioned facts make it possible to formulate the generation of ions of series C in Scheme 2. A bicyclic intermediate is formed by the fission of C_4-C_5 bond and rearrangement of the double bond from the position 1,2 to carbons C_4 and C_5 . This intermediate undergoes further cleavage between C_1 and C_2 :


 $\begin{array}{c} R_{1} \\ R_{2} \\ R_{2} \\ \vdots \\ \vdots \\ r_{2} \\ c \\ r_{2} \\ r_{2} \\ c \\ r_{2} \\ r_{2} \\ c \\ r_{2} \\ r_{2} \\ r_{2}$

	$\mathbf{R_1}$	$\mathbf{R_2}$	M m/e		m/e
I, II	\mathbf{H}	\mathbf{Ac}	200		
III, IV	CH ₂ OAc	Ac	272	I - IV	157
V, VI	H	\mathbf{H}	116		
VII, VIII	CH_2OH	H	146	V - VIII	73
Va, VIa	н	D	118		
VIIa, VIIIa	CH_2OD	\mathbf{D}	149	Va-VIIIa	75
			Scheme 2		

It is assumed that ions at m/e 73 (75) are able to split off a molecule of hydrogen to give rise to ions at m/e 71 (72) visible in all spectra:

$$\begin{array}{c} + & -H_2 \\ HO = CH - CH = CH - OH \\ m/e 73 (75) \end{array} \xrightarrow{} O \equiv C - CH = CH - OH \\ m/e 71 (72) \end{array}$$

The mass spectrum of ethyl-4,6-di-O-acetyl-2,3-dideoxy- α ,D-erythro-hex-2-enopyranoside (IX) was found to be different in some details from that of methyl-4,6-di-O--acetyl-2,3-dideoxy- β ,D-erythro-hex-2-enopyranoside, published earlier [1]. The compound (IX) displays neither peaks of ions (M - •H)+, (M - •H - AcOH)+ and (M - •H - AcOH - CH₂CO)+, nor those of furanoid structure. Peaks (M -- •CH₂OAc)+ at m/e 185 and (M - •CH₂OAc - CH₂CO)+ at m/e 143 are very low in intensity. The main decomposition pathway is retro Diels—Alder fragmentation and the series starting with the loss of a glycosidic •OC₂H₅ radical. Retro Diels— -Alder fragmentation of molecular ions (Scheme 3) leads to an ion at m/e 156 which, after elimination of molecule of ketene, affords ion at m/e 114. The disintegration of ions at m/e 114 proceeds in two different ways. Ions at m/e 85 are formed the •C₂H₅ radical being split off. McLafferty rearrangement and elimination of ethylene furnishes ions at m/e 86, from which, after the loss of radical •CHO, ions at m/e 57 were generated.

The expulsion of \cdot OC₂H₅ radical from the molecular ions gives rise to an ion at m/e 213 which loses acetic acid ($m^* = 110.0$; 213 \rightarrow 153), ketene ($m^* = 80.5$; 153 $\rightarrow \rightarrow 111$) and possibly CH₂O to afford pyronium ions at m/e 81.

The mass spectrum of ethyl-2,3-dideoxy- α ,D-erythro-hex-2-enopyranoside (Fig. 5), as well as that of its O-deuterio analogue evidences the cleavage of 2,3-unsaturated pyranosides following two principal fragmentation series. Ions at m/e 114 are formed from molecular ions by retro Diels—Alder fragmentation. The shift of m/e values of ions at m/e 114, 86, 85 and 57 by one mass unit in the spectrum of O-deuterio compound Xa to values at m/e 115, 87, 86 and 58 and also the presence of metastable peaks proves the decomposition of ions at m/e 114 as given in Scheme 3. The radicals $\cdot OC_2H_5$ having been split off of the molecular ions, ions $(M - \cdot OC_2H_5)^+$ at m/e129 (131) ($m^* = 95.8$; $174 \rightarrow 129$) are formed. These in turn eliminate H₂O, or CH₃OH molecule to afford ions ($M - \cdot OC_2H_5 - H_2O$)⁺ at m/e 111 (112), or ($M - \cdot OC_2H_5 - CH_3OH$)⁺ at m/e 97 (98). It is not excluded that these fragments lose CO to give rise to ions at m/e 83 (84) and 69 (70).

The authors wish to express their thanks to Mr. S. Markovič for his technical assistance.

References

- 1. Rosenthal A., Carbohyd. Res. 8, 61 (1968).
- 2. Finan P. A., Reed R. I., Snedden W., Wilson J. M., J. Chem. Soc. 1963, 5945.
- 3. Vargha L., Kuszman J., Chem. Ber. 96, 411 (1963).
- 4. Whistler R. L., Wolfrom M. L., Methods in Carbohydrate Chemistry. Academic Press, New York-London, 1963.
- 5. Laland S., Overend W. G., Stacey M., J. Chem. Soc. 1950, 738.

Translated by Z. Votický