On phthalides and 1,3-indandiones. XLIX. Preparation of 3-arylmethylene-4,7-dithia-4,5,6,7--tetrahydrophthalides and 2-aryl-4,7-dithia-4,5,6,7--tetrahydro-1,3-indandiones

P. HRNČIAR
Department of Organic Chemistry, Faculty of Natural Sciences, Komensky University, 80100 Bratislava

Received 24 May 1971

Dedicuted to Professor S. Stankoviansky on his 65th birthday

Abstract

3-Arylmethylene-4,7-dithia-4,5,6,7-tetrahydrophthalides, prepared by condensation of 3,6 -dithia-3,4,5,6-tetrahydrophthalic anhydride with arylacetic acids, were rearranged with sodium methanolate to give 2 -aryl-4,7--dithia-4,5,6,7-tetrahydro-1,3-indandiones. 3-(1-Naphthal)-4,7-dithia-4,5,6,7--tetrahydrophthalide underwent substitution chlorination, bromination, and nitration in position 4, whereas 3-(2-naphthal)-4,7-dithia-4,5,6,7-tetrahydrophthalide in position 1 of the naphthalene ring.

In our preceding papers referring to the Gabriel modification of Perkin synthesis we used variously substituted phthalic anhydride [1-4] and cinchomeronic anhydride [5] as starting material. Now, we wish to report the use of 3,6 -dithia-3,4,5,6-tetrahydrophthalic anhydride as the carbonyl component. The reaction of this compound with phenylacetic acid was already described [6].

To prepare variously substituted 3 -arylmethylene-4,7-dithia-4,5,6,7-tetrahydrophthalides, which served for the investigation of the substituent transfer effects and also for the synthesis of 2 -aryl-4,7-dithia-4,5,6,7-tetrahydro-1,3-indandiones, we treated the above-mentioned anhydride either with meta- and para-substituted phenylacetic acids or with 4 -substitued 1 -naphthylacetic and 2-naphthylacetic acids. This reaction was carried out under the conditions of Gabriel modification of Perkin synthesis similar to those employed in the reaction of phthalic anhydride with the mentioned acids i.e. in the presence of catalytic amounts of potassium acetate. It has been shown advantageous to carry out the reaction at a temperature by $20-25^{\circ} \mathrm{C}$ lower $\left(180-210^{\circ} \mathrm{C}\right)$ than that used for condensation of phthalic anhydride with these acids [1]. 3,6-Dithia-3,4,5,6--tetrahydrophthalic anhydride decomposes above $220^{\circ} \mathrm{C}$ before it is capable to react with the proper arylacetic acid. The yield is in substance the same as when using phthalic anhydride. Also in this very case, trans-3-arylmethylene-4,7-dithia-4,5,6,7-tetrahydrophthalides ($I-X I I I, X V-X V I I, X X I I I$) are the reaction products $[7,8]$ similarly as with phthalic anhydride since the presence of a cis isomer could not be proved even chromatographically.

The condensation of 3,6 -dithia-3,4,5,6-tetrahydrophthalic anhydride with p-aminophenylacetic acid does not proceed; therefore p-aminobenzal-4,7-dithia-4,5,6,7-tetrahydrophthalide ($X I V$) was prepared by reduction of the nitro derivative XIII analo-
gously to the naphthal derivative $X X I$. In both cases the reduction with $\operatorname{tin}(\mathrm{II})$ chloride in acetic acid was shown to be quite convenient.

It has been found that 3-(4-X-1-naphthal)-4,7-dithia-4,5,6,7-tetrahydrophthalides ($X V I I I-X X$) and 3-(1-X-2-naphthal)-4,7-dithia-4,5,6,7-tetrahydrophthalides (XXIV-$-X X V I)\left(X=\mathrm{Cl}, \mathrm{Br}, \mathrm{NO}_{2}\right)$ can be well achieved from $X V$ and $X X I I I$ by substitution chlorination, bromination or nitration on naphthalene ring. This method is more advantageous than that from the proper chloro-, bromo-, and nitronaphthylacetic acid. The chlorination was carried out under similar reaction conditions as with 1-naphthalphthalide and 2 -naphthalphthalide $[8,9]$ avoiding thus the addition to the $\mathrm{C}=\mathrm{C}$ double bond. The compounds $X V$ and XXIII behaved differently when brominated: XXIII similarly as I underwent with one molequivalent of bromine an addition bromination at room temperature (substances $X X V I I$ and $X X I X$), whereas $X V$ a substitution bromination on the naphthalene ring in position 4 (substance $X I X$). With $X X I I I$ the substitution bromination could be carried out at the naphthalene ring only in a higher--boiling chlorobenzene. Upon bromination with two molequivalents of bromine the compound $X V$ underwent first substitution and then addition bromination (XXVIII). The different behaviour of $X V$ and XXIII upon bromination could be explained mostly in steric terms. The central $\mathrm{C}=\mathrm{C}$ double bond of $X V$ is more hindered (the second benzene ring of naphthalene is in the ortho-position) than that of XXIII, where the second benzene ring is in the meta-position. This steric hindrance is enhanced in $X X I V-X X V I$ with which the addition bromination to the $\mathrm{C}=\mathrm{C}$ double bond does not take place at all, whereas with $X V I-X X I I$ such a bromination occurs. Under the conditions given for the substitution chlorination and bromination of $X V$ and $X X I I I$ the substitution chlorination and bromination of I does not take place.

The nitration of $X V$ and $X X I I I$ was carried out with concentrated nitric acid in chloroform. The nitration of I proceeds under these reaction conditions only in a low yield (10%). Comparing the substitution reactions of I with those of XV and XXIII one

I-XIV

XXII-XXVI

$X V-X X I I$

XXVII-XXIX

$x X x$
Scheme 1
is entitled to say that an important role - in addition to the positive electromeric effect of the $\mathbf{C}=\mathbf{C}$ double bond - plays also the electron density of aromatic systems, which is higher with naphthalene, this being reflected in the easier course of substitution reactions with $X V$ and XXIII.

An experimental evidence that the halogen or nitro group entered the naphthalene ring was brought forward analogously with the comparable derivatives of 1 -naphthalphthalide and 2-naphthalphthalide [7,8], i.e. by oxidation of XVIII-XX and XXIV-$-X X V I$ with potassium dichromate in acetic acid to furnish the proper naphthoic acid. The compounds $X V^{\top}$ and $X X I I I$ were unambiguously identified as being substituted in the position 4 and 1 at the naphthalene ring, respectively (Scheme 1).

That the chlorination, bromination, and nitration proceeded could be seen also in the infrared spectra of the substances obtained. All phthalides prepared by condensation of 3,6 -dithia- $3,4,5,6$-tetrahydrophthalic anhydride with arylacetic acids reveal a characteristic band of the CO stretching vibration in the $1725-1771 \mathrm{~cm}^{-1}$ range. The position of this band is shifted somewhat lower when compared with analogous benzalphthalides and naphthalphthalides what can be rationalized by an enhanced conjugation between the carbonyl group and the $\mathrm{C}=\mathrm{C}$ double bonds system [9]. The absorption band of these substances in the $1650-1660 \mathrm{~cm}^{-1}$ region is indicative of the central double bond. The position of this band is for the same reason also shifted towards lower frequencies when contrasted with benzalphthalides. Substituted phthalides display similar characteristic bands of those bonds. The band indicative of the central double bond disappears after bromination of $I, X V$, and XXIII. Synthesized dithiaphthalides show a stretching $\mathrm{C}=\mathrm{C}$ double bond vibration of dithiacyclohexene ring at $1518-1535 \mathrm{~cm}^{-1}$. This position was ascribed to the dithiacyclohexene ring on the basis of comparison between spectra of $I-X X V$ with that of 3,6 -dithia-3,4,5,6-tetrahydrophthalic anhydride.

Fig. 1. Electronic spectrum (in methanol).

1. 2-(1-naphthyl)-1,3-indandione;

$$
\begin{aligned}
& \text { 2. 2-(1-naphthyl)-4,7-dithia-4,5,6,7- } \\
& \text {-tetrahydro-1,3-indandione. }
\end{aligned}
$$

Fig. 2. Electronic spectrum in methanolic $10^{-2} \mathrm{~N}-\mathrm{NaOH}$.

1. 2-(1-naphthyl)-1,3-indandione;
2. 2-(1-naphthyl)-4,7-dithia-4,5,6,7-
-tetrahydro-1,3-indandione.

The absorption band at $1556 \mathrm{~cm}^{-1}$ in the latter is associated with the $\mathrm{C}=\mathrm{C}$ double bond, this being in accordance with [10]. The lower frequency of this band is again caused by the expanded conjugation.

It is noteworthy that the addition of bromine to the double $\mathrm{C}=\mathrm{C}$ bond of dithiacyclohexene ring does not proceed even with a threefold excess of bromine.

The clearage of the lactone ring of 3 -arylmethylene-4,7-dithia-4,5,6,7-tetrahydrophthalides proceeded under the same reaction conditions as with benzalphthalides. o-Arylacetyl-3,5-dithia-3,4,5,6-tetrahydrobenzoic acids ($X X X$) are the reaction products, as evidenced by hydrolysis of I.

The rearrangement of 3 -arylmethylene-4,7-dithia-4,5,6,7-tetrahydrophthalides to 2 -aryl-4,7-dithia-4,5,6,7-tetrahydro-1,3-indandiones ($X X X I-X L I I$) was carried out by sodium methoxide in methyl alcohol. The above-mentioned dithiaindandiones, like indandiones, are formed also by direct condensation of one molequivalent of 3,6 --dithia-3,4.5,6-tetrahydrophthalic anhydride with one molequivalent of arylacetic acid and three molequivalents of triethylamine in acetic anhydride as was the case with the preparation of indandiones $X X X I, X L I, X L I I$.

2-Aryl-4,7-dithia-4,5,6,7-tetrahydro-1,3-indandiones thus synthesized display a strong doublet associated with the asymmetric and symmetric vibration of carbonyl groups. The position of the asymmetric band, which is more intensive, is in the $1680-1694 \mathrm{~cm}^{-1}$ and that of the symmetric in the $1730-1732 \mathrm{~cm}^{-1}$ region. These vibrations are shifted by $20-25 \mathrm{~cm}^{-1}$ towards wavelength shorter than the adequate carbonyl vibrations of analogous 2 -aryl-1,3-indandiones [11]. The double bond of dithiacyclohexene ring of $X X X I-X L I I$ is seen in the $1530-1539 \mathrm{~cm}^{-1}$ region. Diethyl 3,6-dithia-3,4,5,6--tetrahydrophthalate is reported to have the $\mathrm{C}=\mathrm{C}$ double bond at $1550 \mathrm{~cm}^{-1}$ [10].

Indandiones $X X X I-X L I I$ have in their electronic spectra bands due to the $\pi \rightarrow \pi^{*}$ and $n \rightarrow \pi^{*}$ transitions shifted towards lower wavelengths when contrasted with those of the corresponding 2 -aryl-1,3-indandiones. Dithiaindandiones, which were prepared, display in alkaline medium little intense band at $500-700 \mathrm{~nm}$ absent in 2 -aryl-1,3--indandiones. This band might be, however, associated with the $n \rightarrow \pi^{*}$ transition of d-electrons of sulfur (Figs. 1, 2).

Experimental

Synthesized substances and their characteristic data are listed in Tables 1-3. Melting points were determined according to Kofler.

Infrared spectra were recorded in nujol with a UR-20 double-beam spectrophotometer with an NaCl prism. Electronic spectra were taken with a 450 Perkin-Elmer apparatus in the $215-750 \mathrm{~nm}$ range. The concentration of the investigated substances was $10^{-3} \mathrm{M}$ in dry methanol.

3-Arylmethylene-4,7-dithia-4,5,6,7-tetrahydrophthalides (I-XVII, XXIII)

3,6-Dithia-3,4,5,6-tetrahydrophthalic anhydride ($3.8 \mathrm{~g}, 0.02 \mathrm{~mole}$), arylacetic acid (0.02 mole) and freshly fused potassium acetate (0.3 g) were placed in a $100 \mathrm{-ml}$ flask equipped with a thermometer and a water outlet tube and heated at $190-210^{\circ} \mathrm{C}$ for $2-4$ hours. The reaction mixture was poured into ethanol (50 ml) and the crude product was crystallized either from ethanol or from the mixture of ethanol and chloroform.

Table 1
3-(X-Benzal)-4,7-dithia-4,5,6,7-tetrahydrophthalides

Compound	X	Formula	M	Calculated/found				Yield [\%]	M.p. [${ }^{\circ} \mathrm{C}$]	$\begin{gathered} \tilde{\nu}(\mathrm{C}=\mathrm{O}) \\ {\left[\mathrm{cm}^{-1}\right]} \end{gathered}$	$\begin{gathered} \tilde{v}(\mathrm{C}=\mathrm{C})^{a} \\ {\left[\mathrm{~cm}^{-1}\right]} \end{gathered}$
				\% C	\% H	\% S	\% X				
I	H	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~S}_{2} \mathrm{O}_{2}$	262.1	59.54	3.82	24.42		69	150-152	1760	1649
				59.63	3.65	24.69					1532
II	3-F	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~S}_{2} \mathrm{O}_{2} \mathrm{~F}$	281.1	55.70	3.21	22.86		68	143-144	1756	1655
III	4-F	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~S}_{2} \mathrm{O}_{2} \mathrm{~F}$	281.1	55.64	3.38	22.93					1539
				55.70 55.48	3.21 3.51	22.86 22.49		66	191-193	1758	1659 1539
IV	3 -Cl	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~S}_{2} \mathrm{O}_{2} \mathrm{Cl}$	296.5	52.65	3.03	21.58	11.89	63	163-165	1760	1655
				52.69	2.93	21.73	11.61				1535
V	4-Cl	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~S}_{2} \mathrm{O}_{2} \mathrm{Cl}$	296.5	52.65	3.03	21.58	11.89	61	190-192	1761	1649
				52.78	3.21	21.32	11.68				1527
VI	$4-\mathrm{Br}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~S}_{2} \mathrm{O}_{2} \mathrm{Br}$	340.9	45.73	2.63	18.65	23.98	62	192-194	1761	1649
VII	3-I	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~S}_{2} \mathrm{O}_{2} \mathrm{I}$	389.9	45.68 40.21	2.96 2.32	18.71 16.51	23.68 32.73	63	192-194	1760	1528 1651
				40.38	2.61	16.81	32.65				1535
VIII	4-I	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~S}_{2} \mathrm{O}_{2} \mathrm{I}$	389.9	40.21	2.31	16.51	32.73	61	197-199	1761	1652
				40.60	2.28	16.48	32.98				1529
IX	$3-\mathrm{CH}_{3}$	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~S}_{2} \mathrm{O}_{2}$	276.1	60.85	4.15	23.15		43	151-153	1760	1653
				${ }^{61.10}$	4.31	23.28					1531
X	$4 . \mathrm{CH}_{3}$	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~S}_{2} \mathrm{O}_{2}$	276.1	60.85 60.74	4.15 4.03	23.95 22.96		39	177-179	1761	1652 1529
XI	$3-\mathrm{OCH}_{3}$	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~S}_{2} \mathrm{O}_{3}$	292.1	57.52	4.13	21.91		48	117-119	1750	1658
				57.74	4.28	22.16					1532
XII	$4-\mathrm{OCH}_{3}$	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~S}_{2} \mathrm{O}_{3}$	292.1	57.52	4.13	21.91		46	166-168	1752	1650
XIII				57.39 50.81	4.28 2.30	21.64 20.80	4.54	51	278-280	1771	${ }_{16520}{ }^{\text {b }}$
	$4-\mathrm{NO}_{2}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~S}_{2} \mathrm{O}_{4} \mathrm{~N}$	307.1	50.93	2.21	20.61	4.68	51	278-280		1529
XIV	4- NH_{2}	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~S}_{2} \mathrm{O}_{2} \mathrm{~N}$	277.1	56.25	2.63	23.08	5.05	81	250-252	1725	1650
				56.34	2.84	22.68	4.73				1520

a) First value characteristic of the central double bond, the second of the dithiocyclohexene ring double bond.
b) $\tilde{\boldsymbol{\nu}}_{\mathrm{as}}\left(\mathrm{NO}_{2}\right) 1515 ; \tilde{\boldsymbol{\nu}}_{\mathrm{s}}\left(\mathrm{NO}_{2}\right) 1338$.

Table 2
3-(4-X-1-Naphthal)-4,7-dithia-4,5,6,7-tetrahydrophthalides ($X V-X X I I$) and 3-(1-X-2-naphthal)-4,7-dithia-4,5,6,7-tetrahydrophthalides (XXIII-XXVI)

Compound	X	Formula	M	Calculated/found				Yield [\%]	$\begin{aligned} & \text { M.p. } \\ & {\left[{ }^{\circ} \mathrm{C}\right]} \end{aligned}$	$\begin{gathered} \tilde{\nu}(\mathrm{C}=\mathrm{O}) \\ {\left[\mathrm{cm}^{-1}\right]} \end{gathered}$	$\begin{gathered} \tilde{v}(\mathrm{C}=\mathrm{C})^{a} \\ {\left[\mathrm{~cm}^{-1}\right]} \end{gathered}$
				\% C	\% N	\% S	\% X				
$X V$	H	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}$	312.2	65.35	3.85	20.47		61	191-193	1762	1648
				65.91	3.92	20.86					1533
$X V I$	$4-\mathrm{CH}_{3}$	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}_{2}$	326.2	66.27	4.29	19.65		39	174-176	1753	1638
											1521
$X V I I$	$4-\mathrm{OCH}_{3}$	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}_{2}$	342.2	63.25	4.21	18.76		49	161-163	1760	1646
				63.38	4.39	18.38					1525
XVIII	$4-\mathrm{Cl}$	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Cl}$	346.6	58.88	3.17	18.82	19.23	78	219-221	1761	1640
				59.05	3.23	18.61	10.35				1525
$X I X$	$4-\mathrm{Br}$	$\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Br}_{2}$	391.1	52.16	2.82	16.37	20.43	69	229-231	1760	1639
				51.93	3.11	16.05	19.96				1535
$X X$	$4-\mathrm{NO}_{2}$	$\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{~N}$	357.2	58.47	3.07	17.92	3.83 N	81	230-231	1762	$1640{ }^{\text {b }}$
				58.25	3.21	17.65	3.41 N				1540
$X X I$	4- NH_{2}	$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{~N}$	327.2	62.37	3.51	19.55	4.28 N	84	228-230	1731	1642
				62.68	3.63	19.81	4.18 N				1541
XXII	$4-\mathrm{NHCOCH}_{3}$	$\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~S}_{2} \mathrm{~N}$	357.2	63.55	4.21	17.95	3.92 N	91	241-243	1764	1647
				63.18	4.60	17.58	3.68 N		(dec.)		1538
XXIII	H	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}$	312.2	65.35	3.85	20.47		73	197-199	1774	1654
				65.13	4.11	20.61					1528
$X X I V$	1-Cl	$\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Cl}$	346.5	58.88	3.17	18.82	10.23	68	219-221	1760	1653
				59.21	3.43	18.38	10.61				1541
$X X V$	$1-\mathrm{Br}$	$\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Br}$	391.1	52.16	2.82	16.37	20.43	63	226-228	1767	1671
				52.38	2.51	16.20	20.87				1529
$X X V I$	$1-\mathrm{NO}_{2}$	$\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{~N}_{2}$	357.2	58.47	3.07	17.92	3.83 N	75	220-272	1767	$1651{ }^{\text {c }}$
				58.21	3.43	17.68	3.65 N				1529

a) First value characteristic of the central double bond, the second of the dithiocyclohexene ring double bond.
b) $\tilde{\nu}_{\text {as }}\left(\mathrm{NO}_{2}\right) 1515 ; \tilde{v}_{\mathrm{s}}\left(\mathrm{NO}_{2}\right) 1329$.
c) $\tilde{\boldsymbol{v}}_{\mathrm{as}}\left(\mathrm{NO}_{2}\right) 1529 ; \tilde{\boldsymbol{v}}_{s}\left(\mathrm{NO}_{2}\right) 1345$.

Table 3
2-(X-Phenyl)-4,7-dithia-4,5,6,7-tetrahydro-1,3-indandiones ($X X X I-X L$),
2-(1-naphthyl)-4,7-dithia-4,5,6,7-tetrahydro-1,3-indandione (XLI),
and 2 -(2-naphthyl)-4,7-dithia-4,5,6,7-tetrahydro-1,3-indandione (XLII)

a) First value characteristic of the asymmetric vibrations, the second of the symmetric vibrations.
b) Dithiocyclohexene ring double bond.

3-(4-Chloro-1-naphthal)-4,7-dithia-4,5,6, 7 -tetrahydrophthalide (XVIII) and 3-(1-chloro-2-naphthal)-4, 7 -dithia-4,5,6, 7 -tetrahydrophthalide (XXIV)

Freshly distilled sulfuryl chloride (2g) was added to a solution of XV or XXIII (0.01 mole) in chloroform (30 ml). The reaction mixture was heated to $30^{\circ} \mathrm{C}$ and allowed to stand for 30 minutes. Then ethanol (50 ml) was added and the desired product was crystallized from the ethanol-chloroform mixture.

3-(4-Bromo-1-naphthal)-4,7-dithia-4,5,6,7-tetrahydrophthalide (XIX) and 3-(1-bromo-2-naphthal)-4,7-dithia-4,5,6,7-tetrahydrophthalide (XXV)

One molequivalent of bromine was added to a solution of XV or XXIII (0.01 mole) in chloroform (30 ml) at room temperature or in chlorobenzene (30 ml) at boiling point. After 30 minutes ethanol (40 ml) was added to the reaction mixture and crystals obtained were recrystallized from the mixture chloroform-ethanol.

> 3-(4-Nitro-1-naphthal)-4,7-dithia-4,5,6,7-tetrahydrophthalide (XX) and 3-(1-nitro-2-naphthal)-4,7-dithia-4,5,6,7-tetrahydrophthalide (XXVI)

Nitric acid ($6 \mathrm{ml}, d=1.5$) was added during 10 minutes to a solution of $X V$ or XXIII (0.01 mole) in chloroform (30 ml) at increased temperature. After cooling ethanol was added and the separated product was crystallized from acetic acid.

3-(4-Aminobenzal)-4,7-dithia-4,5,6,7-tetrahydrophthalide (XIV)
 and 3-(4-amino-1-naphthal)-4,7-dithia-4,5,6,7-tetrahydrophthalide (XXI)

Hydrogen chloride was passed through a mixture of $\operatorname{tin}(\mathrm{II})$ chloride $\left(\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right.$; 10 g), acetic acid (100 ml) and XIII or XX (0.01 mole) at $60^{\circ} \mathrm{C}$ for $21 / 2$ hours. The reaction mixture was poured into water (150 ml) after cooling. The separated salt was washed with ammonia and the base crystallized from chloroform-ethanol mixture.

3-(4-Acetamino-1-naphthal)-4,7-dithia-4,5,6,7-tetrahydrophthalide (XXII)

The substance $X X I$ ($0.7 \mathrm{~g}, 0.002$ mole) was refluxed with acetic anhydride (10 ml) and acetic acid (30 ml) for 90 minutes. The crude product separated after cooling was recrystallized from acetic acid.

3-(Benzal)-4,7-dithia-4,5,6,7-tetrahydrophthalide dibromide (XXVII), 3-(4-bromo-1-naphthal)-4,7-dithia-4,5,6,7-tetrahydrophthalide dibromide (XXVIII), and 3-(2-naphthal)-4,7-dithia-4,5,6,7-tetrahydrophthalide dibromide (XXIX)

One molequivalent of bromine was added to a solution of $I, X V$, or XXIII (0.005 mole) in chloroform (30 ml). After 30 minutes ethanol (50 ml) was added to the reaction mixture. Light-yellow crystals were filtered off and recrystallized from the mixture chloroform--ethanol.

For $X X V I I$: yield 79%, m.p. $136-138^{\circ} \mathrm{C}$.
For $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Br}_{2}$ (421) calculated: $37.00 \% \mathrm{C}, \mathbf{2 . 3 6} \% \mathrm{H}, \mathbf{1 5 . 1 7 \%} \mathrm{S}, \mathbf{3 7 . 7 6} \% \mathrm{Br}$; found: $\mathbf{3 6 . 8 1} \% \mathrm{C}, 2.83 \% \mathrm{H}, 15.46 \% \mathrm{~S}, 37.28 \% \mathrm{Br} ; \tilde{v}(\mathrm{C}=\mathrm{O}) 1755 \mathrm{~cm}^{-1}, \tilde{v}(\mathrm{C}=\mathrm{C}) 1541 \mathrm{~cm}^{-1}$ (of dithiacyclohexene ring).

For XXVIII: yield 69%, m.p. $194-196^{\circ} \mathrm{C}$.
For $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Br}_{3}$ (550.7) calculated: $37.05 \% \mathrm{C}, 1.89 \% \mathrm{H}, 11.64 \% \mathrm{~S}, 43.50 \% \mathrm{Br}$; found $36.72 \% \mathrm{C}, 2.30 \% \mathrm{H}, 11.30 \% \mathrm{~S}, 42.98 \% \mathrm{Br} ; \tilde{\nu}(\mathrm{C}=\mathrm{O}) 1772 \mathrm{~cm}^{-1}, \tilde{\nu}(\mathrm{C}=\mathrm{C}) 1569 \mathrm{~cm}^{-1}$.

For $X X I X$: yield 79%, m.p. $165-168^{\circ} \mathrm{C}$.
For $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Br}_{2}$ (472.1) calculated: $43.18 \% \mathrm{C}, 2.55 \% \mathrm{H}, 13.23 \% \mathrm{~S}, 33.89 \% \mathrm{Br}$; found: $42.78 \% \mathrm{C}, 2.68 \% \mathrm{H}, 12.33 \% \mathrm{~S}, 33.58 \% \mathrm{Br} ; \tilde{\boldsymbol{v}}(\mathrm{C}=\mathrm{O}) 1760 \mathrm{~cm}^{-1}, \tilde{v}(\mathrm{C}=\mathrm{C}) 1531 \mathrm{~cm}^{-1}$.

2-Phenylacetyl-3,6-dithia-1-cyclohexenecarboxylic acid ($X X X$)

A mixture consisting of the substance $I(0.5 \mathrm{~g}, 0.002 \mathrm{~mole})$ and 10% aqueous sodium hydroxide (30 ml) was refluxed 20 minutes. After cooling the solution was filtered and acidified with 10% hydrochloric acid to pH 2 . The product $X X X$, which crystallized during few hours was recrystallized from the benzene-petrol mixture.

Yield 67%, m.p. $120-121^{\circ} \mathrm{C}$.
For $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}_{2}$ (280.1) calculated: $55.56 \% \mathrm{C}, \mathbf{4 . 2 8 \%} \mathrm{H}, \mathbf{2 2 . 8 0} \% \mathrm{~S}$; found: $\mathbf{5 5 . 2 1} \% \mathrm{C}$, $4.51 \% \mathrm{H}, \mathbf{2 2 . 5 1} \% \mathrm{~S} ; \tilde{v}(\mathrm{C}=\mathrm{O}) 1731 \mathrm{~cm}^{-1}, \tilde{v}(\mathrm{C}=\mathrm{C}) 1525 \mathrm{~cm}^{-1}$.

2-A Ayl-4,7-dithia-1,5,6,7-tetrahydro-1,3-indandiones ($X X X I-X L I I$)

Method A

The appropriate phthalide (0.005 mole) was added to a 2% methanolic solution of sodium methoxide (50 ml) and refluxed for 1 hour, during which the colour of the reaction mixture turned violet or dark green. The solution, while hot, was filtered and after cooling acidified with 20% hydrochloric acid to pH 2 . The crude product was crystallized from ethanol, toluene or acetic acid.

Method B (used for preparation of $X X X I, X L I, X L I I)$
A mixture of 3,6 -dithia-3,4,5,6-tetrahydrophthalic anhydride (0.02 mole), arylacetic acid (0.02 mole), acetic anhydride (0.1 mole), and dry triethylamine (0.06 mole) was heated under reflux at $125-130^{\circ} \mathrm{C}$ for 45 minutes. Volatile components were then distilled off under diminished pressure (water ejector) and 96% ethanol (20 ml) was added. The solution was heated to boiling point, poured into 2% sodium hydroxide (500 ml) and stirred at $30^{\circ} \mathrm{C}$ for $6-8$ hours. The reaction mixture was filtered and the filtrate acidified with 20% hydrochloric acid to pH 2 . The crude product was crystallized from ethanol (yield about 50%).

Acknowledgements. I wish to express my thanks to Dr E. Greipelová and Dr M. Livař (Institute of Chemistry, Komenský University, Bratislava) for analyses and electronic spectra, and to Dr A. Perjéssy (Department of Organic Chemistry, Komenský University, Bratislava) for measurement of infrared spectra.

References

1. Hrnčiar, P., Chem. Zvesti 16, 96 (1962).
2. Hrnčiar, P., Chem. Zvesti 17, 668 (1963).
3. Hrnčiar, P. and Joniak, D., Chem. Zvesti 20, 336 (1966).
4. Hrnčiar, P. and Kuruc, L., Chem. Zvesti 21, 267 (1967).
5. Hrnčiar, P., Chem. Zvesti 19, 365 (1965).
6. Hahn, W. E. and Radzyńkiewicz, R., Lodz. Towarz. Nauk, Wydzial III, Acta Chim. 10, 31 (1965).
7. Furdík, M. and Hrnčiar, P., Chem. Zvesti 12, 464 (1958).
8. Furdík, M. and Hrnčiar, P., Chem. Zvesti 14, 44 (1960).
9. Perjéssy, A. and Hrnčiar, P., Collect. Czech. Chem. Commun. 37, 1708 (1972).
10. Schweizer, H. R., Helv. Chim. Acta 52, 2221 (1969).
11. Perjéssy, A. and Hrnčiar, P., Tetrahedron 27, 6159 (1971). Translated by Z. Votický
