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In this paper three regions found experimentally for the expansion of
nonuniformly fluidized beds are characterized. A theoretical model of the
nonuniformly fluidized bed in the system gas—particles is described and
an equation is derived for the relative expansion of bed. The values of
relative expansions calculated from this equation are compared with the
experiment in the system air—particles and with the values calculated
according to the equation put forward by Pyle and Harrison [1]. Our equation
is in better agreement with experiment than the equation of Pyle and
Harrison.

In previous paper [2] we judged the two-phase model of nonuniformly fluidized beds
proposed by Pyle and Harrtson [1]. In this connection we have presented some experi-
mental data. which we used to elaborate and verify the so-called three-flow model of
nonuniformly fluidized beds in the system gas (at low pressures)— particles.

Discussion

In a nonuniformly fluidized bed appearing in systems gas (at low pressure)— particles
the aggregates of particles arise by the effect of disturbance forces [3]. In these aggre-
gates the particles touch each other. During its existence, the aggregate behaves as
a separate particle and the parameters characteristic of particle can be attributed to it.
Only a small part of the fluid passes through the interior of the aggregate.

According to the experimental data, there are three regions which may be distinguished
at a relative expansion of nonuniformly fluidized beds. This statement is confirmed by
Fig. 2 in our preceding paper [2].

In the first region, limited by the interval Re; < Re < Rec max, the relative maximum
height Lmax/L, and the relative minimum height Lmin/L, increase slowly with the value
of Re. The bed height fluctuates, but it is relatively distinetly confined and the number
of particles shot over that demarkation is practically negligible. The visual observation
showed that moving bubbles were observed only when the values of Re came near to
the value Rec max.

In the second region, limited by the interval Rec max < Re < Recmin, the relative
maximum height Lmax/L, increases with the value of "Re much more rapidly than it
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does at Re < Rec,max, but the relative minimum height Lmin/L, changes as in the first
region. The bed height fluctuates considerably and is indistinet while the number of
particles shot over the level increases with Re. An intensive formation of bubbles was
observed visually.

In the third region, limited by the interval Re > Rec min. the values Lmax/L, and
Lmnin/L, increase with Re almost with the same rate as Lmax/L, in the second region.
The formation of bubbhles is very intensive, the size of bubbles is comparable with the
diameter of equipment but no pistons arise. In the second region it was possible to
determine visually (at least approximately) the boundary between dense suspension
and particles shot over it; however, it was not possible in the third region. Owing to
a great number of bubbles the number of particles in a volume unit did not differ much
from the number of particles in a volume unit of the space filled with the particles shot
out. Nevertheless, there is a qualitative difference between the bed and the space filled
with the particles shot out. Whereas there are bubbles of gas, aggregates of particles.
and separate particles in the bed, no bubbles appear in the space filled with the particles
shot out.

The idea that in a dense suspension the aggregates of particles, the separate particles,
and the gas bubbles occur is the basis of the three-flow model. The separate particles
and the aggregates will be denoted as effective particles.

The aggregates are of different size. Since the magnitude of disturbance forces under
otherwise identical conditions is a quasi-stationary stochastic process [3] it may be
assumed that

a) the mass fraction of the particles forming aggregates (and thus also the mass fraction
of separate particles in bed) is a quasi-stationary stochastic process;

b) the number of aggregates in bed is a quasi-stationary stochastic process.

If we choose a convenient measure for the size of aggregates, d;, we can in every mo-
ment distinguish the size range of effective particles in bed which is also a quasi-statio-
nary stochastic process.

The maximum range of the sizes of effective particles which has been found may
then be separated into m equally wide intervals. The mean value d¢; as a class sign,
i.e. the characteristic size of effective particles may then be attributed to the i-th inter-
val. It is evident that for a certain d,; a mass fraction Z; of effective particles exists
in the ¢-th interval of sizes and this fraction is a quasi-stationary stochastic process.

Let a certain aggregate of particle be of the volume V,

na V
Ve=naVp+ Tga=—2L

) (1)
1 — &,
where n, is the number of the equisized particles of equal density g in a certain aggregate
of particles, 7, is the volume of one particle, Vga is the volume of the fluid of density gg
in an aggregate of particles, and &, is the porosity inside aggregate defined by the ratio
Vep/Va. The term equivalent diameter of the aggregate of particles d, stands for the
diameter of such a sphere which is of equal volume 17, as a certain aggregate of particles.
Since in a certain moment it is not possible to determine the ratio of the nwunber of
separate particles to the number of aggregates, we shall assume that the bed consists
only of effective particles with effective diameter de defined by
1
dzpe = —— (.2 )

m

S a0 /d!
2 i/,
i=1
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Evidently dg. changes with time as a quasi-stationary stochastic process.

The value of porosity, €, inside an aggregate changes from &, = 0 when the aggre-
gate consists only of one particle up to &3 = 0.42 which corresponds to the porosity
at incipient fluidization of spherical particles approximating an orthorhombic arrange-
ment [4].

The definition of effective diameter according to equation (2) leads to an idea of a hed
with particles of different density, which has not been explained mathematically so
far. The calculation density of the aggregate with a certain effective diameter appeared
to be a problem. For further considerations we, therefore, introduced the concept of
the so-called modified diameter of effective particles d, . This is the diameter of a spherical
particle of density p, identical with the density of the particles forming a bed at which
the bed consisting of these imaginary particles would show for w > w; equal pulsation
and average value of the height of dense suspension as the real bed for which d, is defined
under otherwise identical conditions.

If dze changes with time as a stationary stochastic process, then also d; changes in
this manner because both are conditioned by the change in the height of dense suspension
which is a quasi-stationary stochastic process. With respect to the limited magnitude
of disturbance forces under otherwise constant conditions [3] an upper limit of the
quantity d, exists, which will be denoted as (d,),ax -

On the basis of the elimination method according to Beiia [5] we assume that in systems
fluidized by gas (d),. is & function of the characteristic length dimension of particles
de (whicl are assumed to be of equal size), the height of compact bed of particles L,
compressibility of gas f, the effective weight of unit volume of the particle g(g, — 0g),
the density og and dynamic viscosity of gas u, the incipient fluidizing velocity i, the
superficial gas velocity w, the diameter of equipment D, and the construction of grid
expressed by means of the parameter K. We shall assume that this parameter is dimension-
less and its value will not depend on w. Dimensional analysis of the set of quantities

{(’l;)mnx : de» Lﬂ’ ﬁ’ g(Qn - 92)’ Qg U, Wi, 10, D’ ]{} (3)
led to the following equation among dimensionless products:

({ Z.)lllﬂ.\' D L

L ZMAX _ f (Re;, Re, Ar, np, — » -2, K), (4)
de de D
where
B 1 .
g = — (9)
0g D

The equation (4£) may be simplified on the basis of the following considerations and
assunptions.

1. Tt is known that Re; is an unambiguous function of 4.

2. For D/d. > 10, the effect of the walls of equipment on hydrodynamic regime is
in uniformly fluidized beds negligible. For the nonuniformly fluidized beds we shall
assume that the effect of D/d. (in our experiments D/d. > 248.9) is also negligible and
the effect of walls represents the simplex L,/D.

3. For measurements in the same system, i.e. for D = const, p = const (where p
is the pressure in system), ¢ = const and thus gz = const, 4 = const it holds ng = const
even for the criterion defined by equation (3).
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4. We proved [3] that in the range of the data worked up by us it is valid Lmin/L, +
+ f(L,) and Lmax/L, # f(L,), i.e. for D = const it may be assumed that the simplex
L,/D in equation (£) will not influence the value (d}),,ax-
5. The value K is considered to be constant in measurements in the same system.
Therefore the equation (£) may be transformed to the form
ﬁlﬂ = f,(Rei, Re). (6)
de

Furthermore, we assume that in the interval Re; < Re < Rec,min (¢.¢. in the first and
second expansion region) the effective particles are at the moment when the relative
height of bed attains the value Lnin/L, fluidized equally as at incipient fluidization while
the modified diameter d, rcaches the instantaneous maximum value (d;),,,«- The observed
moderate increase in the height of Lmin/L, with respect to Li/L, (Fig. 2 in paper [2])
in the interval Re; < Re < Rec,min must be explained by the irregularity of the shape
of aggregates.

Assuming that the value of Archimedes number (47,),.¢

(A = (g L2008 )

max

&

satisfies the incquality (Ar;),.« < 105 (what in the range of the data of our experiments

may be expected because of Are (197;8955>), the equation derived by Beria et al.
[6—8] which is valid for particles of various shape

Re; = 0.00138 470800 (if 200 < Ar < 10) (8)

may be applied to the calculation of R+ in the case of a bed containing effective particles
with a modified maximum diameter (d,),,,.- Thus it may be written

(Rej)nas = 0.00138 (A7)0, (9)
where
. (Wi)max Q¢ , oo
(Bei ) max = ek (@2)max- (10)
u

By inserting from equations (7) and (10) in (9) and rearranging we obtain

. . B 0.599
(Dmax = | Widmax ————— (11)
0.00138 4
where
= 0.890
L R (12)
2
i (13)
"

For individual series of measurements [3] with the samples of particles B,. B,. B;.
and 3, (Table 1, paper [2]) the values (d,),,.« Were calculated according to equation (1)
using the values (wj,),.. taken from the interval <wi;weminp. Further elaboration
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Fig. 1. Graphical representation of the T J T 7
) nax Re 4t =
function (ahmax fl—])-
(le Re;
O sample of particles B,; @ sample of . |
particles B,; m sample of particles Bj;;
G sample of particles B,. g
graphical representation of the {;"7
empirical equation (I14). =
2+ .
15k 7
1 1 1 1 1
1 2 4 6 8 10

Re/Re:

of the calculated values (d,),., has shown (Fig. 1) that the empirical equation of the

form
) Re \ 0.5%0
Ladwax _ 1 ggo (2 (14)
de Re;
complies with the functional relation (6). If we substitute for Re; in (I4) from (8) we
obtain
d: . R 0.590
Udnas _ 4g 69 ( ¢ ) (15)
de A0-890

The basic ideas of the three-flow model may be formulated as follows.

1. A nonuniformly fluidized bed in the system gas—particles consists of two regions,
1.e. a dense suspension and gas bubbles.

In a dense suspension the separate particles and the aggregates of particles occur.
For the probability mean quantities characterizing the hydrodynamic behaviour of
nonuniformly fluidized beds (systems gas at low pressures— particles) the characteristic
length dimension (d;), (so-called modified mean diameter of effective particles) is determin-
ing. It shows the character of effective diameter and is defined by equation

(d;)s — (dz)max + lde . (16)
1+ 2

where 1 is a parameter which has not been determined yet. All bubbles are of equal
volume Vyp (em?), defined [9] by equation

2\ 3/5
Vv = 0.806 (—Q—b) (17)
g

(where [@b] = cm3/s, [g] = cm/s?) and an equal rising velocity wup [cm/s] defined [10, 11]
by equation
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wy = 0.792 ¢%3 7Y (18)

(where [17)] = em?; [g] = cm/s?).

2. For a certain system one value (d;),.« or (d,) is attached to each value Re > Re;.
With increasing Re, the value (d}),,,« increases according to equations (74) or (15) whereas
the value (d,), increases according to equation (I16).

3. The cross section of bed S may be divided in the cross section Sq through which
the gas enters the dense suspension and the cross section Sy through which the gas

flows in the form of hubbles. It holds
S = Saq + Sk. (19)

4. The total flow-rate of gas @ branches in three flows at the inlet into bed. In the
first flow the amount (Qi'z)a enters the bed through the cross section Sq¢ and fluidizes
the particles of diameter (d,), equally as at incipient fluidization. The porosity of the
bhed containing these particles (diameter (d;)s) is, in general, different from that of the
whole bed at incipient fluidization. In the second flow the amount (Q'), enters the bed
through the cross section Sq and goes through the aggregates of particles. In the third
flow the amount (Qy)a enters the bed through the cross section Sg and is the source of
bubble formation. The material balance of gas may then Le expressed by equation

Q = (@), ~ (@)a + (Qv)a. (20)

The disadvantage of this model consists in the fact that it is not possible to perform
a direct experimental verification of the applicability of equations (16) and (20).
On the basis of the above model the mean height L, may be expressed as= follows.
The flow-rates in the equation (20) express according to their definition the following

relations:
Q=ws, (21
(@i)a = (4ig)s Sa = (i) («8), (22)
(@v)a = up Sy = w[(1 — «) 5], (23)

where (uy,), is the incipient fluidizing veloeity of the bed corresponding to the particles
of diameter (d,), and

_Sd
N

« <1. (24y

The equality in the relationship (2£) is valid only for the incipient fluidization.

The flow-rate of gas (Q'). which goes through the aggregates of particles may be
assumed to equal the difference of the flow-rate which belongs to the particles of dia-
meter (d,), at incipient fluidization for the cross section of column S and the flow-rate
(@i,),- Thus it holds

(Ql)ﬂ == (u}j‘z)sS - (l”i-z)s (“S) = (wi.z)s [(1 - d) S]' (25)

The quantity x may be expressed independently on the basis of the following consi-
deration. Let the fluidized bed be of the height L, at a certain value w > w;; then the
volume of dense suspension 17q will be

Va= SqLa. (26)
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At incipient fluidization the volume of dense suspension Vyg; is identical with the total
volume of bed I7;.

Tai=Vi=L;iS = 1.724 L“S, (27)

provided that the particles are spherical and & = 0.420. If we neglect the change in
the porosity at incipient fluidization among the aggregates of particles, the following
equation will be valid because of the change in their shape

Va = Vai (28)

from which after inserting from cquations (26) and (27) and respecting equation (24)
we obtain

(29)

The velocity of gas wy in dilute suspension referred to the cross section Sp is identical
with the rising velocity of one bubble uy. If we substitute in equation (I18) for T’y from
equation (I17) and (@v)a = Q1 express by means of equations (27), (21), (22), and (25)
we get after rearrangement

wy = 11.45 D¥3[w — (wy,),]'5, (30)

(where [w] = [w},], = [un] = em/s, [D] = cm).

After substituting the acceleration due to gravity g and rearranging in an cquation
without dimensional constant equations (21), (22), (23), (23), (29), and (30) give for
L,

& 2/5
ﬂ _ 1.724(g D)* : (31)
L, (g D)2 — 1.373[w — (wy,)]¥

The value (w;,), may be calculated from equation (8) if we put d = (d;), and w; = (wy,),-

Thus we obtain

£}

(32)

. - 0.00138 4
(u‘iz)s — ((]Z):.mo (_—_) 5

B

where 4 and B are defined by equations (12) and (13). We failed to put forward a complete
coneept of the quality 2 in equation (76). Further we shall assume a symmetrical distri-
bution of particles according to size; hence 2 = 1.

By substituting for (d;), from (16)in (32) and regarding (75) we obtain after rearrang-
ing for 2 = 1 the following equation without any dimensional constant

. u [ . Re 0.390 ]1.67
(wy,)s = 0.00138 Ayo.890 -11o5 |1+ 48.69 | —— (33)
de O l .A,.o.seo J

For Re = Re;, i.e. (d,), = de the expression in braces of the equation (33) equals one
and it holds (“'i.z)s = wj.

Figs. 2—5 present some data on relative expansion La/L, = f(Re) (full lines) which
have been calculated on the assumption that 4 = 1 according to equations (31) and
(33) for a series of measurements with the samples of particles B,, B,, B;, and B, fluidized
by air [2]. It is obvious that the agreement between the values of relative expansion
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Irig. Confrontation of the relative
-expansions La/L, calculated from equa-
tion (31) with experimental values
and with relative expansions L/IL, acord-
ing to Pyle and Harrison [1] — — —
for a sample of particles B, (dr = 197)
fluidized by air.

A incipient fluidization;

values.
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Fig. 4. Confrontation of the relative
expansions L,/L, calculated from equa-
tion (31) —- with experimental values
-and with relative expansion L/L, accord-
ing to Pyle and Harrison [1] — — —
for a sample of particles B, (dr = 908)
fluidized by air.
4 incipient fluidization; ¢ experimental
values.
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Fig. 3. Confrontation of the relative
expansions La/L, calculated from equa-
tion (31) ——— with experimental values
and with relative expansions L/L, accord-
ing to Pyle and Harrison [1] — —
for a sample of particles B, (Ar = 350)
fluidized by air.
¢ incipient fluidization;  experimental
values.
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Iig. 5. Confrontation of the relative
expansions La/L, calculated from equa-
tion (31) with experimental values
and with relative expansion L/L, accord-
ing to Pyle and Harrison [1] — — —
for a sample of particles B, (4r = 8955)
fluidized by air.
4 incipient fluidization; experimental
values.
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L,/L, calculated according to equations (31) and (33) and the experimental values is
relatively good. The maximum percentual deviation of the values L./L, according to
equation (31) with respect to the smoothed experimental data is 149,.

It is evident from the course of theoretical curves and the set of experimental points
that the quantity 2 is at least a function of the gas velocity and the size of particles
while the effect of particle size is more marked (it determines the systematic deviation).
For sufficient understanding of A further experimental data are necessary. It may be
supposed that 2 is a function of the conveniently defined Froude number which characte-
rizes in a sense the degree of inhomogeneity of fluidized bed.

For comparison, Figs. 2—5 also show (dashed lines) the equations of relative expansion
L/L, = f(Re) where the value L was calculated from the following equation derived by
Pyle and Harrison [1] according to two-phase model of the nonuniformly fluidized bed

L, w — Wi

RS [

— (34)
L K(w — wi) — upi
The agreement between the experimental values of relative expansion and the values
calculated according to equation (31) is in the whole range of Re and for all samples
of particles investigated much better than it is in the case of the values calculated accord-
ing to equation (34) derived by Pyle and Harrison.
In conclusion it must be pointed out that equations (31) and (33) were verified only
for 4r € (197; 8955 if air at atmospheric pressure was used as a fluidizing gas.
Furthermore it would be convenient to examine the effect of different compressibility 8,
of quantity L,/D, and of different kinds of grids.

Symbols
Ar = g d®(gp — 0g) 0g #~* — Archimedes number
(A7) ax Archimedes number defined by the relationship (7)
de characteristic length dimension of particle
dze effective diameter of effective particles defined by the relationship (2)
d, modified diameter of effective particles
(d2) max maximum modified diameter of effective particles
(d;)s characteristic length dimension defined by equation (16)
D inner diameter of column
g acceleration due to gravity
K parameter characterizing the grid or dimensionless ccefficient in equation
(34)
L fluidized bed height

Lmax, Lmin maximum and minimum height of the nonuniformly fluidized bed at the
time of observation under constant conditions

L, = 4mfn D? g, — height of compact bed of particles
L; bed height at incipient fluidization
Lpax + L
La = MR T average height of fluidized bed
b
m mass of the sample of particles
71g number of particles in an aggregate
Re = wde pg u~' — Reynolds number
Ree.max Reynolds number characterizing the break of the curve log (Lmex/Lo) =
= f(log Re)
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Ree,min Reynolds number characterizing the break of the curve log (Lmin/T:) =
= f(log Re)

Re; = wide pg p~' —- Reynolds number at incipient fluidization

(8¢}, max Reynolds number defined by relationship (79)
cross section of column

Sn part of the cross section of column S through which gas enters the dilute
suspension

Sa part of the cross section of column S through which gas enters the dense
suspension

Q total flow-rate of gas through the hed

Qv flow-rate of gas in the bubble phase through the bed

(Q")a average flow-rate of gas passing through aggregates of particles

(@b)a average flow-rate of gas effected by bubbles

(Q5,)a average flow-rate of gas attached to the particles of (d;), diameter at

incipient fluidization
rising velocity of a separate bubble in the vicinity of the incipient fluidiza-

tion

Uy rising velocity of bubbles through bed

y bubble volume

L particle volume

Vea volume of gas in an aggregate of particles

Ta volume of dense suspension at w > w;

17 volume of bed at incipient fluidization

Ta volume of an aggregate of particles
superficial gas velocity

wi incipient fluidizing velocity

(05, max incipient fluidizing velocity attached to the effective particles of (d,),,.x
diameter

(1), incipient fluidizing velocity attached to the effective particles of (d;), dia-
meter

4 parameter defined by relationship (24)

p compressibility of gas

€ porosity of fluidized bed
porosity of bed at incipient fluidization

£a porosity inside an aggregate of particles

2 undefined parameter in equation (16)
dynamic viscosity of gas

3 dimensionless complex defined by relationship (5)

density of gas
density of particles
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