# Thermodynamics of the enantiotropic phase transitions in condensed systems. II. <br> Binary systems* 

I. KOS̃TENSKÁ<br>Departrrent of Inorganic Technology, Slovak Technical University, 88037 Brati:lava

Received 17 November 1973


#### Abstract

The course of the liquidus curve of the component B in a simple eutectic binary system $A-B$, in which $B$ exists in two modifications, was thermodynamically analyzed. The analysis was performed for the case that $T^{\mathbf{t r}}$ was situated between the melting temperature of the component and the eutectic temperature in this system. Two ways were presented to find out the experimentally undeterminable hypothetical melting temperature, $T_{\alpha}^{\mathrm{f}}$, and the enthalpy of phase transition $\Delta H_{\alpha}^{\mathrm{f}}$ at $T_{\alpha}^{\mathrm{f}}$ of the low-temperature modification of component B for the case that the thermodynamic parameters of this component were known. Further it was found that based on the liquidus. course the said unknown parameters of the component B could be determined even for the case that $\Delta H_{\beta}^{\mathrm{f}}$ and $A H^{\text {tr }}$ were not known. The study of the liquidus diagram of the binary system $A-B$ enabled us to obtain so far unknown information on the component $B$ concerning its polymorphic transformation.


Let us consider a simple eutectic system $A-B$. The component $B$ exists in it in two polymorphous modifications, i.e. the low-temperature ( $\alpha$ ) and the high-temperature ( $\beta$ ) modification. With respect to the equilibrium "solidus-liquidus" such a case is interesting, for which the relation $T_{\mathrm{E}}<T^{\mathrm{cr}}<T_{\beta}^{\mathrm{f}}$ holds ( $T_{\mathrm{E}}$ being the eutectic temperature in the system $\mathrm{A}-\mathrm{B}, T^{\mathrm{tr}}$ the temperature of the transition $\mathrm{B}_{\alpha} \rightleftarrows \mathrm{B}_{\beta}$, and $T_{\beta}^{\mathrm{f}}$ the melting temperature of the high-temperature modification $\mathrm{B}_{\beta}$ ).

An isobaric phase diagram of the considered type is shown in Fig. 1. There are two invariant points in this diagram, viz. the point E and the point Q . The point Q corresponds to the equilibrium $\mathrm{L}_{\mathrm{Q}} \rightleftarrows \mathrm{B}_{\alpha}^{\mathrm{s}}+\mathrm{B}_{\beta}^{\mathrm{s}}$ ( $\mathrm{L}_{\mathrm{Q}}$ is the liquid phase in the composition given. by the point $\mathrm{Q}, \mathrm{B}_{\alpha(\beta)}^{\mathrm{f}}$ is the solid phase of the $\alpha$ - and $\beta$-modification of the component B )

The liquidus curve of the component B exhibits a break representing the intersection point of the curves $T_{\beta}^{\widehat{\mathrm{f}} \mathrm{Q}}$ and $\overparen{T_{\alpha}^{\mathrm{f}} \mathrm{E}}$. Under the equilibrium conditions the liquidus curves $\widehat{T_{\beta}^{\mathrm{f}} \mathrm{Q}}$ and $\widehat{Q E}$ are experimentally measurable. The hypothetical melting temperature of the low-temperature modification, $T_{\alpha}^{\mathrm{f}}$, and the corresponding enthalpy change of $\Delta H_{\alpha}^{\mathrm{f}}$ at $T_{\alpha}^{\mathrm{f}}$ cannot be determined in the equilibrium state. It is however inevitable to know them for the theoretical calculation of the liquidus course of the component $B$ on the part $\widehat{Q E}$ of the curve.

[^0]

Fig. 1. Phase diagram of the simple eutectic binary system A-B, in which the component $B$ exists in two modifications. Hatching shows the Tamman triangles.

The paper [1] presents the calculation of these quantities in one-component systems. In the present paper the problem of determining these values is being solved for simple eutectic binary systems.

1. Thermodynamic parameters $T_{\beta}^{\mathrm{f}}, \Delta H_{\beta}^{\mathrm{f}}, T^{\mathrm{tr}}, \Delta H^{\mathrm{tr}}, C_{P}^{\mathrm{t}}, C_{P}^{\beta}, C_{P}^{\alpha}$ are known.
1.1. Let us suppose that $\Delta C_{P}$ of the phase transitions "solidus-liquidus" are zero.

Then for the point $Q$ at the temperature $T^{\text {tr }}$ the equation holds

$$
\begin{equation*}
\ln a_{\beta}=\Delta H_{\beta}^{\mathrm{f}} \cdot R^{-1}\left[\frac{1}{T_{\beta}^{\mathrm{f}}}-\frac{1}{T^{\mathrm{tr}}}\right] \tag{1}
\end{equation*}
$$

where $a_{\beta}$ is the activity of the component B in the liquid phase in the point Q , being in equilibrium with the solid $\beta$-modification of the component $B$.

For the point $Q$ at the same temperature eqn (2) is valid:

$$
\begin{equation*}
\ln a_{\alpha}=\Delta H_{\alpha}^{\mathrm{f}} \cdot R^{-1}\left[\frac{1}{T_{\alpha}^{\mathrm{f}}}-\frac{1}{T^{\mathrm{tr}}}\right] \tag{2}
\end{equation*}
$$

where analogously, $a_{\alpha}$ is the activity of the component B in the liquid phase in the point Q , being in equilibrium with the solid $\alpha$-modification of the component $\mathbf{B}$.

For $\Delta C_{P}^{1 / 8}=0$ it holds

$$
\begin{equation*}
\Delta H_{\alpha}^{\mathrm{f}}=\Delta H_{\beta}^{\mathrm{f}}+\Delta H^{\mathrm{tr}} \tag{3}
\end{equation*}
$$

In the point $Q$ the liquid phase is in equilibrium with two solid phases that are also mutually in equilibrium.

For the temperature $T^{\text {tr }}$ the relation holds $a_{\alpha}=a_{\beta}$; by introducing eqn (3) into eqn (2) and simultaneous solution of eqns (1) and (2) we obtain the hypothetical melting temperature of the low-temperature modification of B .

$$
\begin{equation*}
T_{\alpha}^{\mathrm{f}}=\frac{\left(\Delta H_{\beta}^{\mathrm{f}}+\Delta H^{\mathrm{tr}}\right) T^{\mathrm{tr}} \cdot T_{\beta}^{\mathrm{f}}}{\Delta H_{\beta}^{\mathrm{f}} \cdot T^{\mathrm{tr}}+\Delta H^{\mathrm{tr}} \cdot T_{\beta}^{\mathrm{f}}} \tag{4}
\end{equation*}
$$

1.2. Let us suppose that $\Delta C_{P}$ of the phase transitions "solidus-liquidus" are not zero.

Then for the activity $a_{\beta}$ of the component B in the point Q at the temperature $T^{\mathrm{tr}}$ the following equation holds

$$
\begin{equation*}
R \cdot T^{\mathrm{tr}} \cdot \ln a_{\beta}=-\Delta H_{\beta}^{\mathrm{f}}\left[1-\frac{T^{\mathrm{tr}}}{T_{\beta}^{\mathrm{f}}}\right]+\int_{T^{\mathrm{tr}}}^{T_{B}^{\mathrm{t}}} \Delta C_{P}^{1 / \beta} \mathrm{d} T-T^{\mathrm{tr}} \int_{T_{\mathrm{tr}}}^{T_{B}^{\mathrm{t}}} \Delta C_{P}^{1 / \beta} \mathrm{d} \ln T \tag{5}
\end{equation*}
$$

Since all the quantities on the right-hand side are known, $a_{\beta}$ for the temperature $T^{\operatorname{tr}}$ can be readily computed.

Analogously for the activity $a_{\alpha}$ of $B_{\alpha}$ in the same point $Q$ and at the same temperature $T^{\text {tr }}$ it holds

$$
\begin{equation*}
R \cdot T^{\operatorname{tr}} \cdot \ln a_{\alpha}=-\Delta H_{\alpha}^{\mathrm{f}}\left[1-\frac{T^{\mathrm{tr}}}{T_{\alpha}^{\mathrm{f}}}\right]+\int_{T^{\mathrm{tr}}}^{T_{\alpha}^{\mathrm{t}}} \Delta C_{l^{\prime}}^{1 / \alpha} \mathrm{d} T-T^{\mathrm{tr}} \int_{T^{\mathrm{tr}}}^{T_{\alpha}^{\mathrm{t}}} \Delta C_{P}^{1 / \alpha} \mathrm{d} \ln T \tag{6}
\end{equation*}
$$

Since for $T^{\operatorname{tr}}$ it holds $a_{\alpha}=a_{\beta}$, the activity $a_{\alpha}$ is known. There are, however, on the right--hand side of eqn (6) two unknown quantities, viz. the hypothetical melting tempera'ture $T_{\alpha}^{\mathrm{f}}$ and the corresponding melting enthalpy $\Delta H_{\alpha}^{\mathrm{f}}$. Therefore it is necessary to find another independent equation containing only these two quantities as unknown parameters. We will obtain this equation in the following manner.

For the transition temperature $T^{\text {tr }}$ it holds

$$
\begin{equation*}
\Delta H_{T^{\prime} \mathrm{tr}}^{1 / \alpha}=\Delta H_{T^{\mathrm{tr}}}^{1 / \beta}+\Delta H^{t \mathrm{r}} \tag{7}
\end{equation*}
$$

then

$$
\begin{equation*}
\Delta H_{T}^{1 / \beta}=\Delta H_{\beta}^{\mathrm{f}}-\int_{T^{\mathrm{tr}}}^{T_{\mathrm{t}}^{\mathrm{t}}} \Delta C_{P}^{1 / \beta} \mathrm{d} T \tag{8}
\end{equation*}
$$

Likewise it holds

$$
\begin{equation*}
\Delta H_{T^{1 \mathrm{r}}}^{1 / \alpha}=\Delta H_{\alpha}^{\mathrm{f}}-\int_{\lambda_{\mathrm{tr}}}^{T_{\alpha}^{\mathrm{t}}} \Delta C_{P}^{1 / \alpha} \mathrm{d} T \tag{9}
\end{equation*}
$$

and comparing eqns ( $(\underset{\sim}{ }-9)$ we obtain eqn (10).

$$
\begin{equation*}
\Delta H_{\alpha}^{\mathrm{f}}=\Delta H_{\beta}^{\mathrm{f}}+\Delta H^{\mathrm{tr}}-\int_{T_{\operatorname{tr}}}^{T_{\beta}^{\mathrm{tr}}} \Delta C_{P}^{1 / \beta} \mathrm{d} T+\int_{T^{\mathrm{tr}}}^{T_{\mathrm{r}}^{\mathrm{t}}} \Delta C_{P}^{1 / \alpha} \mathrm{d} T \tag{10}
\end{equation*}
$$

Then eqns (6) and (10) enable us to determine both $T_{\alpha}^{\mathrm{f}}$ and $\Delta H_{\alpha}^{\mathrm{f}}$.
For the computation of these two quantities, $T_{\alpha}^{\mathrm{f}}$ and $\Delta H_{\alpha}^{\mathrm{f}}$, also another procedure may be used.

We transform the activity coordinates in the functional dependence $a_{\mathrm{B}}^{1}=\mathrm{f}(T)$ as follows

$$
\begin{equation*}
a_{T \mathrm{tr}}: a_{T^{\mathrm{tr}}}^{*}=a_{T_{\alpha}^{t}}: a_{T_{\alpha}^{t}}^{*} \tag{11}
\end{equation*}
$$

where $a_{T t r}, a_{r_{\alpha}}^{\mathrm{f}}$ denote the original activity of the component B in the solution, saturated with this component at $T^{\mathrm{tr}}$ and $T_{\alpha}^{\mathrm{f}}$, respectively; $a_{T^{\text {tr }}}^{*}, a_{T_{\alpha}^{t}}^{*}$ are the transformed activities of the same component and at the same temperatures.

Usually one chooses $a_{T}{ }^{\mathrm{f}}=1$, and then $a_{T \text { tr }} \neq 1$.

Let us choose $a_{T}^{*}=1$; then from eqn (11) it follows that

$$
\begin{equation*}
a_{T_{\alpha}^{t}}^{*}=\frac{a_{T^{t r}}^{*} \cdot a_{T_{\alpha}^{t}}}{a_{T^{t r}}}=\frac{\mathbf{1}}{a_{T^{t r}}} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\ln a_{T_{\alpha}^{t}}^{*}=-\ln a_{T t} \tag{13}
\end{equation*}
$$

respectively.
Then for the activity $a_{T_{\alpha}^{\prime}}^{*}$ we obtain

$$
\begin{equation*}
R \cdot T_{\alpha}^{\mathrm{f}} \cdot \ln a_{T_{\alpha}^{\mathrm{t}}}^{*}=-\Delta H_{T^{1 \mathrm{tr}}}^{1 / \alpha}\left[1-\frac{T_{\alpha}^{\mathrm{f}}}{T^{\mathrm{tr}}}\right]+\int_{T_{\alpha}^{\mathrm{t}}}^{T^{\mathrm{tr}}} \Delta C_{P}^{1 / \alpha} \mathrm{d} T-T_{\alpha}^{\mathrm{f}} \int_{T_{\alpha}^{\mathrm{t}}}^{T_{\mathrm{tr}}^{\mathrm{tr}}} \Delta C_{P}^{1 / \alpha} \mathrm{d} \ln T \tag{14}
\end{equation*}
$$

Since $\Delta H_{T^{4 r}}^{1 / \alpha}$ can be determined using eqn ( $\tilde{\tau}$ ), the only unknown quantity with respect to relation (14) is the temperature $T_{\alpha}^{\mathrm{f}}$.

We will apply the procedure of the transformed activity coordinates to the computation of $T_{\alpha}^{\mathrm{f}}$ and $\Delta H_{\alpha}^{\mathrm{f}}$ for $\mathrm{CaF}_{2}$ in the system $\mathrm{LiF}-\mathrm{CaF}_{2}$ and use for this purpose the data according to Naylor [2]:

$$
\begin{aligned}
& T_{\beta}^{\mathrm{f}}=1691 \mathrm{~K} \\
& \Delta H_{\beta}^{\mathrm{f}}=7100 \mathrm{cal} \mathrm{~mol}{ }^{-1} \\
& C_{P}^{\mathrm{t}}=23.88 \mathrm{gibbs} \mathrm{~mol}^{-1} \\
& C_{P}^{\beta}=\left(25.81+2.5 \times 10^{-3} T\right) \text { gibbs mol } \\
& C_{P}^{\alpha}=\left(14.30+7.28 \times 10^{-3} T+4.69 \times 10^{5} T^{-2}\right) \text { gibbs mol}{ }^{-1} \\
& T^{\mathrm{tr}}=1424 \mathrm{~K} \\
& \Delta H^{\mathrm{tr}}=1140 \mathrm{cal} \mathrm{~mol}^{-1}
\end{aligned}
$$

Considering the simplified case that $\Delta C_{P}=0$ (eqn (4)), then

$$
a_{\mathrm{Q}}=0.673, \quad \Delta H_{\alpha}^{\mathrm{f}}=8240 \mathrm{cal} \mathrm{~mol}^{-1}, \quad T_{\alpha}^{\mathrm{f}}=1648.18 \mathrm{~K}
$$

If we take the values of $C_{P}$ according to [2] and apply eqn (14), then $a_{\mathrm{Q}}=0.642, a_{\alpha}^{*}=$ $=1.56$ and

$$
T_{\alpha}^{\mathrm{f}}=1637 \mathrm{~K} ; \quad \Delta H_{\alpha}^{\mathrm{f}}=9428.13 \mathrm{cal} \mathrm{~mol}^{-1} .
$$

The calculated liquidus curve of $\mathrm{CaF}_{2}$ ( $\alpha$ - and $\beta$-modifications) in the system $\mathrm{LiF}-\mathrm{CaF}_{2}$ is presented in paper [3].
2. Only the values $T_{\beta}^{\mathrm{f}}$ and $T^{\mathrm{tr}}$ are known, while $\Delta H_{\beta}^{\mathrm{f}}, \Delta H^{\mathrm{rr}}$, and all $C_{P}$ values are unknown.

For this case the above-discussed procedure cannot be applied. Therefore by, means of the TA method we shall determine the liquidus of the component $B$ and the point $Q$ with a highest possible accuracy (see Fig. 1).

### 2.1. Difference between $T^{\mathrm{T}}$ and $T^{\mathrm{tr}}$ is not too great (up to approx. $100^{\circ} \mathrm{C}$ ).

In this case the point $Q$ is usually situated near the melting point of the pure component B. The activity $a_{\mathrm{B}}$ may be therefore expressed with a satisfactory precision using the universal relationship [4] as

$$
a_{\mathrm{B}}=x_{\mathrm{B}}^{k^{\mathrm{st}}}
$$

where $k_{\mathrm{A} / \mathrm{B}}^{\mathrm{st}}$ denotes the number of particles appearing in the system formed by the puresubstance $B$, as a consequence of 1 molecule of substance A brought in into the system. If $T^{\mathrm{s}}-T^{\mathrm{tr}}$ is less than $100^{\circ} \mathrm{C}$, then the 3 rd and 4 th terms on the right-hand side of eqn (5) may be supposed to be negligible and we may use eqn (2).

For the computation of $\Delta H_{\beta}^{\mathrm{f}}$ and $\Delta H^{\text {tr }}$ the relation $\ln x_{\mathrm{B}}=\mathrm{f}\left(T_{\mathbf{B}}^{-1}\right)$ can be applied:

$$
\begin{align*}
\ln \alpha_{\mathrm{B}}= & k_{\mathrm{A} / \mathrm{B}}^{\mathrm{St}} \cdot \ln x_{\mathrm{B}}=\frac{\Delta H_{\mathrm{B}}^{\mathrm{f}}}{R}\left[\frac{1}{T_{\mathrm{B}}^{\mathrm{f}}}-\frac{1}{T_{\mathrm{B}}}\right] \\
& \ln x_{\mathrm{B}}=q-k \cdot \frac{1}{T_{\mathrm{B}}} \tag{15}
\end{align*}
$$

Since the graphical representation of the dependence $\ln x=f(1 / T)$ is a straight line, it is possible; to determine the values of $\Delta H_{\beta}^{\mathrm{f}}$ and $\Delta H_{\alpha}^{\mathrm{f}}$ from the slope of this line. In Fig. 2 the course of the dependence $\ln x=\mathrm{f}(1 / T)$ is presented for three different values: of $k^{5 t}$.


Fig. 2. The course of the dependence $\ln x_{\mathrm{B}}^{k_{A / \mathrm{B}}^{\mathrm{st}}}=\mathrm{f}\left(T^{-1}\right)$ for $k_{\mathrm{A} / \mathrm{B}}^{\mathrm{St}}=1,2,3$.

The straight lines passing through the points $1 / T_{\beta}^{f}$ and $1 / T_{\alpha}^{\mathrm{f}}$ can be used to computethe magnitudes of $\Delta H_{\beta}^{f}$ and $\Delta H_{\alpha}^{f}$, respectively. The difference between $\Delta H_{\alpha}^{f}$ and $\dot{\Delta} H_{\beta}^{f}$ equals $\Delta H^{\text {tr }}$. The value of $T_{\alpha}^{\mathrm{f}}$ can be obtained either using eqn (4) or graphically from. Fig. 2.

### 2.2. Difference $T_{\beta}^{\mathrm{f}}-T^{\mathrm{tr}}>100^{\circ} \mathrm{C}$. (An approximate procedure.)

For this case the missing thermodynamic parameters will be determined in the following way. Again it is supposed that the liquidus course of the component $B$ in the system $A-B$ is known and that the point $Q$ has been determined. It should be noted that it is advantageous to choose for the component $A$ such a substance, for which it unambiguously holds that $k_{\mathrm{A} / \mathrm{B}}^{\mathrm{St}}$ is an integer. The liquidus of B is evaluated by cryometry for $x_{B} \rightarrow 1$ and $\Delta H_{\beta}^{f}$ calculated. For the point $Q$ the criterion of the thermodynamic consistence III [5] is applied in the simplified form

$$
\Delta H_{\beta}^{\mathrm{f}} \cdot k_{\beta}=\Delta H_{\alpha}^{\mathrm{f}} \cdot k_{\alpha}
$$

and $\Delta H_{\alpha}^{\mathrm{f}}$ is obtained. The computation of $T_{\alpha}^{\mathrm{f}}$ will be carried out using eqn (4). $\Delta H_{\alpha}^{\mathrm{f}}$ and $\Delta H_{\beta}^{\mathrm{f}}$ are known, which makes it possible to determine the magnitude of $\Delta H^{\operatorname{tr}}$ (eqn (7)). By introducing the value of $\Delta H_{\beta}^{f}$ into eqn (1) the activity of the component $B$ in the point $Q$ at the transition temperature $T^{\text {tr }}$ is obtained. The comparison of this value with the experimentally obtained concentration coordinate of the point $\mathbf{Q}$ will demonstrate to what extent the accepted simplifications have been justified.

## References

1. Malinovský, M. and Koštenská, I., Chem. Zvesti 28, 509 (1974).
2. Naylor, B. F., J. Amer. Chem. Soc. 67, 150 (1945).
3. Koštenská, I., Vrbenská, J., and Malinovský, M., Chem. Zvesti 28, 531 (1974).
4. Malinovský, M. and Koštenská, I., Chem. Zvesti 28, 493 (1974).
5. Malinovský, M., Chem. Zvesti 28, 489 (1974).

Translated by M. Malinovský and T. Guttmannová


[^0]:    * Presented at the 2nd Czechoslovak Seminar on '"Molten Salt Systems', Bratislava, April 11-12, 1973.

