Isothiocyanates. XLI. Synthesis and infrared spectra of benzotriazolyl isothiocyanates

A. MARTVOŇ, D. ILAVSKÝ, and M. UHER

Department of Organic Chemistry, Slovak Technical University, 880 37 Bratislava

Received 17 January 1974

Accepted for publication 9 April 1974

The synthesis of 1-(X-phenyl)-5-benzotriazolyl isothiocyanates and 1-alkyl-5-benzotriazolyl isothiocyanates is described. Characteristic frequencies of infrared spectra of the synthesized derivatives are given.

As mentioned in our previous papers [1, 2], isothiocyanates having their —NCS group bound to a fluorescent active skeleton could be well suited to determine the antibody properties in biological materials. For this reason we synthesized isothiocyanates of

 $Table \ 1$ 1-R-Benzotriazolyl isothiocyanates

Com-	D	TO 1	7.6	Calculated/found		Yield	M.p.	
pound	R	Formula	M	% N	% S	[%]	[°C]	
I	Phenyl	C ₁₃ H ₈ N ₄ S	252.3	22.24	12.70	65.2	150-151	
				22.15	12.59			
II	Tolyl	$C_{14}H_{10}N_4S$	266.0	21.07	12.10	68.2	178 - 180	
				21.06	12.02			
III	4-Methoxyphenyl	$C_{14}H_{10}N_4OS$	282.0	19.91	11.35	64.0	241 - 243	
				19.92	11.38			
IV	4-Ethoxyphenyl	$\mathrm{C_{15}H_{12}N_4OS}$	296.1	18.92	10.81	62.0	141 - 142	
				19.24	10.86			
V	4-Chlorophenyl	$C_{13}H_7CIN_4S$	286.5	19.52	11.18	61.0	195 - 197	
				19.35	11.25			
VI	4-Bromophenyl	$C_{13}H_7BrN_4S$	331.2	16.91	9.66	61.9	205 - 208	
			34	16.94	9.73			
VII	3-Methylphenyl	$C_{14}H_{10}N_4S$	266.0	21.07	12.10	66.0	127 - 129	
				21.18	12.13			
VIII	3-Chlorophenyl	$C_{13}H_7CIN_4S$	286.5	19.52	11.18	60.0	177 - 178	
				19.66	11.30			
IX	Methyl	$C_8H_6N_4S$	190.2	29.53	16.81	67.0	113 - 116	
•				29.62	16.87			
\boldsymbol{X}	Ethyl	$C_9H_8N_4S$	204.2	27.45	13.34	68.0	127 - 129	
				27.77	13.14		•	
XI	tert-Butyl	$C_{11}H_{12}N_{4}S$	232.2	24.18	13.76	65.0	175 - 177	
				24.20	13.79			

Table 2											
Frequencies of infrared spectra of synthesized isothiocyanates (cm ⁻¹)											

Com- pound	δ(CH)						100.000		Other bands			
I	880,				975	1370	1470	1605	2055	2080	1180	
II	870,	890,	905		960	1510 1350 1490	1550 1470 1590	1610	$2110 \\ 2050 \\ 2110$	$\frac{2160}{2075}$	1080 1315	1115
III	850,	880,	905		990	$1350 \\ 1550$	$1470 \\ 1590$	1615	2060	$\frac{2115}{2160}$	1090 1310	1180
IV	850,	875,	915,	930	975	1350 1490	1390 1530	1610	2070	$\frac{2115}{2160}$	1080 1300	1120
V	850,	875,	920,	940	970	1505 1595	1540	1600	$2050 \\ 2115$	$2080 \\ 2160$	1110	1180
VI	850,	875,	915,	940	975	$1495 \\ 1595$	1545	1610	$\begin{array}{c} 2045 \\ 2115 \end{array}$	$\begin{array}{c} 2080 \\ 2160 \end{array}$	$1080 \\ 1300$	1120
VII	830,	890,	930,	910	975	$\frac{1350}{1590}$	1500	1605	$2060 \\ 2120$	$2080 \\ 2160$	$\begin{array}{c} 1110 \\ 1105 \end{array}$	1180 1300
VIII .	000000 000				975	$1350 \\ 1495$	$\frac{1450}{1540}$	1590	$\begin{array}{c} 2050 \\ 2110 \end{array}$	$\begin{array}{c} 2080 \\ 2160 \end{array}$	$\frac{1080}{1105}$	1090 1300
IX	890,		940		970	$1340 \\ 1540$	$1500 \\ 1590$	1615	$\begin{array}{c} 2065 \\ 2160 \end{array}$	2115	$\frac{1180}{1120}$	1300
X	875,				970	$\frac{1370}{1500}$	$\frac{1460}{1585}$	1615	$2060 \\ 2155$	2110	$\frac{1115}{1180}$	$\frac{1120}{1300}$
XI	830,	875,	905		975	$1350 \\ 1400 \\ 1540$	1375 1485	1610	$\frac{2060}{2115}$	$2080 \\ 2160$	$\frac{1080}{1160}$	1110 1300

benzotriazolyl type. It is also known that various systems become biologically active by introduction of the -NCS group [1, 3-5].

This paper refers to the synthesis and infrared spectra of benzotriazolyl isothiocyanates substituted in position 1 by an alkyl or aryl.

Isothiocyanates were synthesized by the thiophosgene method: Thiophosgene in heterogeneous mixture water—chloroform—dichloroethane was treated with a chloroform solution of amine. Yields of isothiocyanates thus prepared were 62-68%, what means that the effect of substituents on the reaction of thiophosgene with amine is not notable. All isothiocyanates as listed in Table 1 are white crystalline substances.

The infrared spectra of 1-substituted benzotriazoles are relatively little systematically described in the literature. O'Sullivan [6] reports for 1-phenylbenzotriazole an absorption in the 1500 to 1670 cm⁻¹ range, consisting of three characteristic absorption bands ($\tilde{v}(C=C)$ 1673 cm⁻¹, $\tilde{v}(N=N)$ 1601 cm⁻¹, and \tilde{v}_{arom} 1509 cm⁻¹). As seen in Table 2 our derivatives reveal characteristic vibrations of $\tilde{v}(C=C)$ neither at about 1670 cm⁻¹, nor within the 1640–1630 cm⁻¹ range as is the case with 2-phenyl substituted derivatives of benzotriazole [1], what indicates a quite significant interaction of the —NCS group with the benzotriazole ring, providing that it is substituted by an aryl in position 1. Similar conclusions could be deduced, in accordance with [7], also for 1-alkyl substituted benzotriazoles.

In the $2200-2000 \,\mathrm{cm^{-1}}$ range a strong absorption band, attributable to $\tilde{v}_{as}(NCS)$, could be observed. If the -NCS group was located in position 5 of the benzotriazole ring, then 4 absorption maxima due to splitting of the maximum at about $2060 \,\mathrm{cm^{-1}}$

similar to that of benzothiazolyl isothiocyanates [8] were seen. Splitting did not occur if electron-donating substituents were in position 1. Another two absorption maxima of the complex band in the 2200–2000 cm⁻¹ range did not differ from other isothiocyanates of aromatic systems [9].

Experimental

Infrared spectra were measured with a double-beam UR-20 spectrophotometer in the 3660 to $800~\rm cm^{-1}$ range in chloroform ($c=2.5\times 10^{-2}\,\rm M$, $0.427~\rm mm$ cell thickness). The apparatus was calibrated with a polystyrene foil.

Intermediates needed for the synthesis of isothiocyanates were prepared according to [10-17].

1-R-5-Benzotriazolyl isothiocyanates

A solution of the proper amine (0.1 mole) in chloroform (120 ml) was gradually added to a mixture of water (200 ml), chloroform (150 ml), dichloroethane (150 ml), and thiophosgene (12 g; 0.105 mole) under vigorous stirring. While adding, the temperature of the reaction medium was kept in the 5–10°C range and the pH value was adjusted with solid calcium carbonate to 7. Stirring was continued after addition of the amine solution for 2 hrs at room temperature; the organic layer was then separated, dried with anhydrous calcium chloride, and removed. The dry residue was crystallized from the mixture benzene—light petroleum 3:1. Characteristic data of the prepared isothiocyanates and frequencies of their infrared spectra are listed in Tables 1 and 2.

References

- 1. Martvoň, A., Antoš, K., and Uher, M., Collect. Czech. Chem. Commun. 37, 2967 (1972).
- Martvoň, A., Zborník prác Chemickotechnologickej fakulty SVŠT. (Collection of Communications, Section Chemistry, Slovak Technical University.) Bratislava, in press.
- 3. Logemann, W. and Galimbert, S., Biol. Med. 3, 227 (1960).
- 4. Mackie, A., Manufacturing Chemist. 31, 97 (1960).
- 5. Hata, J. and Tsuruoko, M., J. Pharm Soc. Jap. 74, 245 (1954).
- 6. O'Sullivan, O. G., J. Chem. Soc. 1960, 3653.
- 7. Molnár, I., Helv. Chim. Acta 46, 1473 (1963).
- 8. Martvoň, A. and Skačáni, I., Chem. Zvesti 27, 387 (1973).
- 9. Kristian, P., Antoš, K., and Kováč, Š., Chem. Zvesti 17, 747 (1963).
- 10. Leymann, H., Ber. 15, 1234 (1882).
- 11. Van Romborgh, O., Rec. Trav. Chim. Pays-Bas 2, 104 (1883).
- 12. Reissert, A. and Goll, G., Ber. 38, 93 (1905).
- 13. Zincke, L., Justus Liebigs Ann. Chem. 313, 264 (1900).
- 14. Bremer, O., Justus Liebigs Ann. Chem. 514, 279 (1934).
- Cartez, P. H., Katritzky, A. R., and Plant, S. G., J. Chem. Soc. 1955, 337.
- 16. Pinov, A. and Koch, R., Ber. 30, 2852 (1897).
- 17. Beretta, J., Gazz. Chim. Ital. 55, 742 (1925).

Translated by Z. Votický