Benzothiazole compounds. VII. N-Substituted N'-(4,5,6,7-tetrahydro-5,5-dimethyl-7-oxo-2-benzothiazolyl) ureas

^aV. SUTORIS, ^bV. KONEČNÝ, ^cP. FOLTÍNOVÁ, ^aA. PERJÉSSY, and ^dE. KUCHÁR

^aDepartment of Organic Chemistry, Faculty of Natural Sciences, Komenský University, 801 00 Bratislava

> ^bResearch Institute of Agrochemical Technology, 810 04 Bratislava

^cDepartment of Microbiology, Faculty of Natural Sciences, Komenský University, 886 04 Bratislava

^dDepartment of Analytical Chemistry, Faculty of Natural Sciences, Komenský University, 801 00 Bratislava

Received 6 November 1974

N-Substituted N'-(4,5,6,7-tetrahydro-5,5-dimethyl-7-oxo-2-benzothiazolyl)ureas were synthesized and their infrared spectra were interpreted. Antibacterial activity $in\ vitro$ was studied. N-(3,4-Dichlorophenyl) and N-(4-chlorophenyl-3-trifluoromethyl) derivatives were found to be the most active of the synthesized compounds.

Инфракрасной спектроскопией была подтверждена структура полученных N-замещенных N'-(5,5-диметил-4,5,6,7-тетрагидро-7-оксо-2-бензтиа-золил) мочевин. Ин витро изучалось их антибактериальное воздействие. Наиболее эффективной оказалась N-(3,4-дихлорфенил)-N'-(5,5-диметил-4,5,6,7-тетрагидро-7-оксо-2-бензтиазолил) мочевина и N-(3-трифторметил-4-хлорфенил)-N'-(5,5-диметил-4,5,6,7-тетрагидро-7-оксо-2-бензтиазолил) мочевина.

In the recent literature, a series of derivatives of N-(2-benzoxazolyl)- and N-(2-benzothiazolyl)ureas and -thioureas have been described. These compounds are interesting as bacteriostatics, and herbicides and can be applied also in human medicine. A review of these compounds and of the proceedings of their synthesis was presented in [1].

In this work the attention was focused to the preparation of N-substituted N'-(4,5,6,7-tetrahydro-5,5-dimethyl-7-oxo-2-benzothiazolyl)ureas and these compounds were tested for antibacterial and herbicidal activities. The starting 2-amino-4,5,6,7-tetrahydro-5,5-dimethyl-7-oxobenzothiazole has been used so far for the preparation of various 4,5,6,7-tetrahydro-5,5-dimethyl-7-oxobenzothiazole-2-azobenzenes which are applied in analytical chemistry as acid-base indicators, chelate-forming agents, redox indicators, or metallochromic indicators [2-4].

The synthesized N-R-N'-(4,5,6,7-tetrahydro-5,5-dimethyl-7-oxo-2-benzothiazolyl) ure as

II III	R Methyl Phenyl	Formula C ₁₁ H ₁₅ N ₃ O ₂ S	M	% C	% H	0/ 37				
II III		$\rm C_{11}H_{15}N_{3}O_{2}S$	0.00		70	% N	% S	% Cl	Yield %	$^{ m M.p.}_{ m ^{\circ}C}$
III	Phenyl		253.3	52.11	5.97	16.60	12.67		94.2	287 - 289
III	Phenyl			52.09	5.79	16.44	12.90			
		$\mathrm{C_{17}H_{17}N_3O_2S}$	315.4	61.00	5.43	13.33	10.17		97.1	296 - 298
				60.87	5.32	13.51	10.04			
IV	3-Methylphenyl	$\mathrm{C_{17}H_{19}N_3O_2S}$	329.4	62.05	5.82	12.76	9.74		90.8	306 - 307
IV				61.89	5.90	12.48	9.74			
	4-Methylphenyl	$\mathrm{C_{17}H_{19}N_3O_2S}$	329.4	62.05	5.82	12.76	9.74		96.6	293 - 295
				62.20	5.76	12.91	9.73			
V	2-Methylphenyl	$C_{17}H_{19}N_3O_3S$	345.4	59.17	5.55	12.17	9.20		94.2	303 - 305
***				59.22	5.26	12.29	9.41			
VI	3-Methoxyphenyl	$\mathrm{C_{17}H_{19}N_3O_3S}$	345.4	59.17	5.55	12.17	9.29		97.7	232 - 234
****				59.08	5.34	11.93	9.28			
VII	4-Methoxyphenyl	$C_{17}H_{19}N_3O_3S$	345.4	59.17	5.55	12.17	9.20		98.0	290 - 293
				59.26	5.37	12.05	9.38		101.010.01	
VIII	3-Chlorophenyl	$\mathrm{C_{16}H_{16}ClN_3O_2S}$	348.8	54.88	4.60	12.00	9.16	10.13	97.1	304 - 306
				54.76	4.52	12.19	9.42	10.07		,,,,
IX	4-Chlorophenyl	$\mathrm{C_{16}H_{16}ClN_{3}O_{2}S}$	348.8	54.88	4.60	12.00	9.16	10.13	97.4	303 - 304
				54.71	4.39	12.23	9.07	10.18		000 001
\boldsymbol{X}	3,4-Dichlorophenyl	$C_{16}H_{15}ClN_3O_2S$	384.2	50.04	3.93	10.93	8.34	18.46	94.2	292 - 294
				50.22	3.87	11.15	8.53	18.28	0.1.2	202 201
XI	2,4,5-Trichlorophenyl	$C_{16}H_{14}CIN_3O_2S$	418.7	45.86	3.36	10.02	7.65	23.38	93.1	306 - 308
	***	0000 000€ 800 000		45.71	3.40	9.87	7.74	25.17	0.7.1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
XII	3-Chloro-4-methylphenyl	$C_{17}H_{18}ClN_3O_2S$	363.8	56.09	4.95	11.57	8.82	8.76	94.6	296 - 297
				55.88	4.90	11.35	9.00	9.72	01.0	200 201
XIII	4-Fluorophenyl	$C_{16}H_{16}FN_3O_2S$	333.4	57.70	4.84	12.61	9.62	02	90.7	304 - 307
				57.58	4.70	12.80	9.72		00.1	901-901
XIV	3-Trifluoromethyl-	$C_{17}H_{16}F_3N_3O_2S$	383.4	53.30	4.20	10.96	8.37		96.2	303 - 305
	phenyl			53.14	4.32	10.79	8.54		00.2	000 - 000
XV	3-Trifluoromethyl-	$C_{17}H_{15}ClF_3N_3O_2S$	417.8	48.84	3.61	10.07	7.68	8.50	90.2	306 - 308
	-4-chlorophenyl			48.75	3.48	10.26	7.90	8.71	00.2	300-300
XVI	3-Nitrophenyl	$C_{16}H_{16}N_4O_4S$	360.4	53.37	4.40	15.55	8.90	0.71	89.1	270 - 272
	A			53.19	4.37	15.60	8.71		00.1	210-212
XVII .	4-Nitrophenyl	$C_{16}H_{16}N_4O_4S$	360.4	53.37	4.44	15.55	8.90		87.2	290 - 292
		** -***	300.1	53.48	4.31	15.42	8.74		01.2	230-232
XVIII	3-Nitro-4-chlorophenyl	$C_{16}H_{15}CIN_4O_4$	394.8	48.64	3.82	14.17	8.11	8.97	90.9	264 - 265
		-10104-4	301.0	48.55	$\frac{3.02}{3.97}$	14.17	8.02	8.81	au.a	204-200

The above-mentioned ureas (Table 1) were synthesized by a reaction of 2-amino-4,5,6,7-tetrahydro-5,5-dimethyl-7-oxobenzothiazole [3] with the corresponding isocyanates. Their structures were confirmed by evaluation of the infrared spectra. In the i.r. spectra (taken in solid phase) of the compounds of general formula A

$$H_{2}C$$

$$H_{3}C$$

$$A$$

$$R^{4}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

a strong band belonging to the C=O stretching vibration of the $-\mathrm{NH}-\mathrm{CO}-\mathrm{NH}-$ group was observed in the region of 1729–1707 cm⁻¹. With the unsubstituted derivative II ($\mathrm{R}^1=\mathrm{R}^2=\mathrm{R}^3=\mathrm{R}^4=\mathrm{H}$) this band appeared at 1711 cm⁻¹, which was in a good agreement with the value of $\nu(\mathrm{C=O})$ 1713 cm⁻¹ observed in the spectrum of the model compound B.

As known from the literature [5, 6], the derivatives of urea in solid phase absorb in the $1650-1630~\rm cm^{-1}$ region, this being caused by the intermolecular hydrogen bonds of the C=O ··· H-N- type in the cyclic dimers. The high value (1729—1707 cm⁻¹) of the C=O stretching frequency with the compounds of the general formula A in solid phase can be explained only by the fact that these compounds appear mostly in a tautomeric form and conformation illustrated in the Scheme C

$$H_{3}C$$
 $H_{3}C$
 H

where the formation of cyclic dimers was sterically hindered. Nevertheless, in the spectra of both the compounds A and the model compound B a shoulder was observed at $1650 \,\mathrm{cm^{-1}}$ beside that at $1729-1707 \,\mathrm{cm^{-1}}$. This proved that in equilibrium a minor part of molecules was bound by intermolecular hydrogen bonds of the $C=0\cdots H-N-$ type or appeared in tautomeric form where the C=0 group was conjugated with the double bond C=N. The absorption band belonging to the C=0 stretching vibration in the unsaturated ring was observed as a shoulder in the region of $1715-1696 \,\mathrm{cm^{-1}}$ with all compounds of the general formula A. This

Chem. zvesti 29 (4) 552-557 (1975)

shoulder was not observed in the spectrum of the model compound B. Several absorption bands belonging to N—H stretching vibration of the free N—H group were observed at $3360-3300~\rm cm^{-1}$. The N—H group bound by a hydrogen bond showed a broad maximum at $3200-3100~\rm cm^{-1}$. The strong absorption band in the $1626-1618~\rm cm^{-1}$ region was attributed to the stretching vibration of the thiazole and benzene rings.

The antimicrobial activity of the synthesized compounds was presented in Table 2. N-(3,4-Dichlorophenyl)- and N-(4-chlorophenyl-3-trifluoromethyl)-N'-(4,5,6,7-tetrahydro-5,5-dimethyl-7-oxo-2-benzothiazolyl)ureas (X and XV) were found to be the most active of all the compounds tested. With these compounds, favourable effects were found mainly against the test-strains of both the gram-positive (Bacillus subtilis, Staphylococcus aureus) and gram-negative (Escherichia coli) nonspecific bacterial flora. These three test-organisms were inhibited by the concentration $10~\mu g/ml$ while Pseudomonas aeruginosa was not sensitive to these compounds even at the highest concentration $200~\mu g/ml$. Good antibacterial activity was found also with N-(methyl)-N'-(4,5,6,7-tetrahydro-5,5-dimethyl-7-oxo-2-benzothiazolyl)urea (I). The above-mentioned three compounds showed the best effects on Candida pseudotropicalis.

3-(Nitrophenyl)- and 4-(nitrophenyl)-N'-(4,5,6,7-tetrahydro-5,5-dimethyl-7-oxo-2-benzothiazolyl)ureas (XVI and XVII) had good antimycobacterial activity. These compounds acted against $Mycobacterium\ bovis\ {\tt BCG}$ as bactericides at the concentration of $100\ \mu{\rm g/ml}$ and caused bacteriostasis even at $10\ \mu{\rm g/ml}$. With respect to $Mycobacterium\ fortuitum$, which is more resistant to antituberculotics, $400\ \mu{\rm g/ml}$ acted bactericidally and $200\ \mu{\rm g/ml}$ still caused a bacteriostasis.

No particular herbicidal and fungicidal activities were observed and all compounds were eliminated after the first screening.

Experimental

Physical constants and data of elemental analysis of the synthesized compounds are given in Table 1.

Infrared spectra were measured on a UR-20 (Zeiss, Jena) spectrophotometer in the region of $3800-700~\rm cm^{-1}$. The samples were prepared in the form of nujol suspensions. Polystyrene foil was used for calibration of wavenumbers.

The microbiological activity on the test-organisms presented in Table 2 was determined according to [7]. The starting 2-amino-4,5,6,7-tetrahydro-5,5-dimethyl-7-oxobenzothiazole was prepared according to [8].

$$N\hbox{-}R\hbox{-}N'\hbox{-}(4,5,6,7\hbox{-}tetrahydro\hbox{-}5,5\hbox{-}dimethyl\hbox{-}7\hbox{-}oxo\hbox{-}2\hbox{-}benzothiazolyl)urea} \\ (I-XVIII)$$

To 2-amino-4,5,6,7-tetrahydro-5,5-dimethyl-7-oxobenzothiazole (9.8 g; 0.05 mole) and the appropriate isocyanate (0.055 mole), toluene (benzene at I) (100 ml) and triethylamine (0.1 ml) were added. The reaction mixture was stirred for 2 hrs at $40-50^{\circ}$ C and for another 3 hrs at boiling under reflux. After cooling the precipitated solid products were filtered off and washed with benzene or toluene.

 $Table\ 2$ Antimicrobial activity of the synthesized compounds

No.	MIC					Bactericidal/ba	cteriostatical conce	Lethal concentration		
	Bacillus subtilis	Staphilococ- cus aureus	Escheri- chia coli	Pseudomonas aeruginosa	Candida pseudo- tropicalis	BGC	Mycobacterium fortuitum	Trypa- nosoma cruzi	Trichomonas foetus	Euglena gracilis
I	50	50	100	>200	200	>100/100	>500/500	>200	>500	>500
II	>200	$> \! 200$	$> \! 200$	> 200	> 200	> 100/100	> 500/500	> 200	> 500	> 500
III	> 200	> 200	> 200	> 200	> 200	> 100/100	> 500/500	> 200	$> \! 500$	> 500
IV	> 200	> 200	$> \! 200$	> 200	> 200	> 100/100	> 500/500	> 200	$> \! 500$	> 500
V	$> \! 200$	$> \! 200$	> 200	> 200	> 200	> 100/100	> 500/500	> 200	$> \! 500$	> 500
VI	> 200	$> \! 200$	> 200	> 200	$> \! 200$	> 100/100	> 500/500	> 200	$> \! 500$	> 500
VII	> 200	$> \! 200$	$> \! 200$	> 200	> 200	> 100/100	>500/500	> 200	$> \! 500$	> 500
VIII	> 200	$> \! 200$	> 200	> 200	> 200	> 100/100	> 500/500	> 200	> 500	> 500
IX	200	200	> 200	> 200	> 200	> 100/100	> 500/500	> 200	> 500	> 500
\boldsymbol{X}	10	10	10	> 200	10	> 100/100	> 500/500	> 200	> 500	> 500
XI	200	200	200	> 200	200	100/50	500/500	> 200	> 500	> 500
XII	100	100	100	> 200	> 200	100/50	> 500/500	> 200	> 500	> 500
XIII	200	200	$> \! 200$	> 200	> 200	> 100/50	> 500/500	> 200	500	> 500
XIV	> 200	200	>200	> 200	> 200	> 100/100	> 500/600	>200	$> \! 500$	> 500
XV	10	10	10	> 200	200	100/50	500/300	> 200	> 500	> 500
XVI	> 200	200	$> \! 200$	> 200	> 200	100/10	400/200	> 200	$> \! 500$	$> 500^{\circ}$
XVII	> 200	200	> 200	> 200	> 200	100/10	400/200	> 200	> 500	> 500
VIII	200	200	200	> 200	> 200	> 100/100	> 500/500	> 200	$> \! 500$	> 500

 $MIC = minimal inhibitory concentration, \mu g/ml.$

References

- 1. Fischer, E., Henke, W., and Sedl, H., Wissenschaftliche Zeitschrift der Universität Rostock 22, (3) 373 (1973). Mathematisch-Naturwissenschaftliche Reihe.
- 2. Kuchár, E., Tormová, T., and Martinovičová, E., Chem. Zvesti 27, 461 (1973).
- Gaile, I. K., Gudrinietse, E. J., and Vanag, G., Izv. Akad. Nauk Latv. SSR 4, 523 (1962).
- 4. Kuchár, E., Chem. Zvesti 24, 28 (1970).
- 5. Janoen, M. J., Spectrochim. Acta 17, 475 (1961).
- Culthup, N. B., Daly, L. H., and Wiberley, S. E., Introduction to Infrared and Raman Spectroscopy, pp. 384-385. Academic Press, New York, 1964.
- Raška, K., et al., Mikrobiologické vyšetřovací methody. (Microbiological Examination Methods.) Státní zdravotnické nakladatelství. (State Publishing House of Public Health.) P. 152. Prague, 1958.
- Gaile, I. K., Linaberg, J. J., and Gudrinietse, E. J., Izv. Akad. Nauk Latv. SSR 2, 204 (1967).

Translated by A. Kardošová