Synthesis and pesticidal activity of new derivatives of carbamic and thiocarbamic acids and of urea

V. KONEČNÝ

Research Institute of Agrochemical Technology, 810 04 Bratislava

Received 4 April 1975

New derivatives of carbamic and thiocarbamic acids and of urea were synthesized by the reaction of N-alkoxycarbonyl-N-methylcarbamoyl chloride with hydroxy and mercapto compounds as well as with amines. Several compounds were found to have a good pesticidal activity.

Описан синтез новых производных карбамидовой, тиокарбамидовой кислот и мочевины реакцией *N*-карбокси-*N*-метилкарбамоилхлорида с гидрокси- и меркаптановыми соединениями, а также и с аминами. Для нескольких соединений найдено очень хорошее пестицидное действие.

Considering the fact that esters of carbamic and thiocarbamic acids and of derivatives of urea are widely used mainly as insecticides and herbicides, we synthesized

$$R^{10CO} = R^{10CO} = R^{10CO}$$

Scheme 1

The serial numbers of compounds in the Tables 1—7 correspond to the Roman numbers in the Scheme 1.

 $Table\ 1$ Characterization of monosubstituted phenylcar bamates (A)

	***	7.0		2.5	Cal	culated/for	and	Ya	Yield	B.p. °C/Torr
No.	\mathbb{R}^1	${f R}^6$	Formula	<i>M</i>	% C	% Н	% N	Ya	%	M.p. °C/solvent $n_{\scriptscriptstyle \mathrm{D}}^{\scriptscriptstyle 20}$
1	$\mathrm{CH}(\mathrm{CH_3})_2$	н	$\mathrm{C_{12}H_{15}NO_4}$	237.24	60.71 61.08	$6.32 \\ 6.40$	5.90 6.20	a	70	102/0.15
2	$ m CH(CH_3)_2$	3-CH_3	$\mathrm{C_{13}H_{17}NO_{4}}$	251.26	$62.22 \\ 62.40$	$\begin{array}{c} 6.77 \\ 7.02 \end{array}$	$5.56 \\ 5.72$	a	77	114/0.15
	$\mathrm{CH_3}$	$2\text{-CH}_2\text{CH}\!=\!\text{CH}_2$	$\mathrm{C_{13}H_{15}NO_{4}}$	249.25	$62.71 \\ 62.55$	$6.03 \\ 6.11$	5.62 5.73	a	89	121/0.2
4	$\mathrm{CH_3}$	4-cyclohexyl	$\mathrm{C_{16}H_{21}NO_{4}}$	291.23	$66.10 \\ 65.81$	$7.22 \\ 7.41$	$4.82 \\ 4.94$	a	61	51-53 Petroleum ethe
5	$\mathrm{CH_3}$	$3\text{-N}(\mathrm{CH_3})_2$	$\rm C_{12}H_{16}N_{2}O_{4}$	252.16	57.10 57.41	$6.34 \\ 6.12$	$11.08 \\ 11.42$		89	1.5312
6	$\mathrm{CH}(\mathrm{CH_3})_2$	4-Cl	$\mathrm{C}_{12}\mathrm{H}_{14}\mathrm{ClNO}_4$	271.69	53.18 52.84	$5.21 \\ 5.15$	$5.15 \\ 5.29$	a	71	124/0.2
7	$ m CH_3$	$2\text{-CH}_2\text{OH}$	$\mathrm{C_{11}H_{13}NO_{5}}$	239.21	$55.28 \\ 55.41$	$5.43 \\ 5.52$	$5.86 \\ 5.82$	a	80	1.5461
8	$ m CH_3$	2-CHO	$\mathrm{C}_{11}\mathrm{H}_{11}\mathrm{NO}_5$	237.20	55.70 55.85	$\frac{4.64}{4.71}$	$5.95 \\ 5.72$	\boldsymbol{a}	61	147/0.3
9	$\mathrm{CH_3}$	$2\text{-CH}_2\text{SCH}_3$	$\mathrm{C_{12}H_{15}NO_{4}S}$	269.20	53.58 53.63	5.57 5.76	$5.20 \\ 4.99$	b	89	146/0.15
10	$\mathrm{CH_3}$	$2\text{-CH}_2\mathrm{SC}_2\mathrm{H}_5$	$\mathrm{C_{13}H_{17}NO_{4}S}$	283.33	55.10 54.86	$6.02 \\ 6.16$	$\frac{4.99}{5.07}$		90	149/0.1
11	$\mathrm{CH_3}$	2-COOCH ₃	$\mathrm{C_{12}H_{13}NO_6}$	267.22	54.00 54.16	4.86 4.98	$5.24 \\ 5.35$	a	69	147/0.2
12	$ ext{CH}_3$	2-CONHCH_3	$\rm C_{12}H_{14}N_{2}O_{5}$	266.24	54.20 53.91	$\begin{array}{c} 5.25 \\ 5.02 \end{array}$	10.51 10.40	b	89	148-149 EtOH

Table 1 (Continued)

	70.1	To 6	TI1	3.6	Cal	culated/for	und	- Va	Yield	B.p. °C/Torr M.p. °C/solvent	
No.	\mathbb{R}^1	${f R}^6$	Formula	M	% C	% н	% N	· Y#	%	$n_{ m D}^{20}$	
13	$ m CH_3$	2-(1,3-oxathiolan-2-yl)	C ₁₃ H ₁₅ NO ₅ S	297.31	52.51 52.34	5.05 5.21	4.81 4.70		84	1.5582	
14	$ ext{CH}_3$	$3\text{-NHCOCH}_2\text{Cl}$	$\mathrm{C_{12}H_{13}ClN_2O_5}$	300.68	47.88 48.06	$4.32 \\ 4.16$	$9.33 \\ 9.45$		70	$_{\rm EtOH}^{100-102}$	
15	$ ext{CH}_3$	$3-NHCOCH_3$	$\mathrm{C_{12}H_{14}N_{2}O_{5}}$	266.24	54.20 54.01	$5.25 \\ 5.40$	$10.51 \\ 10.42$	a	87	120-122 Water	
16	$ ext{CH}_3$	3-NHCOOCH_3	$\mathrm{C_{12}H_{14}N_{2}O_{6}}$	282.24	51.05 50.88	$4.95 \\ 4.70$	$9.91 \\ 9.93$		88	1.5400	
17	$\mathrm{CH_3}$	4-NHCSNHCH_3	$\rm C_{12}H_{15}N_3O_4S$	297.32	48.50 48.16	$5.05 \\ 5.16$	14.14 13.90	a	92	$156-158$ $\mathrm{CH_3CN}$	
18	CH_3	3-NHCON(CH ₃)COOCH ₃	$\rm C_{14}H_{17}N_{3}O_{7}$	339.30	49.60 49.48	$5.02 \\ 4.81$	$12.40 \\ 12.17$		90	131-133 EtOH	
19	$ ext{CH}_3$	3-NHCOCH ₂ SC(S)- morpholino	$\mathrm{C_{17}H_{21}N_{3}O_{6}S_{2}}$	427.28	$47.82 \\ 47.60$	$\frac{4.90}{4.71}$	$9.82 \\ 9.94$		88	$^{114-116}_{\rm EtOH}$	
20	$\mathrm{CH_3}$	$4\text{-N}\!=\!\text{C(SCH}_3)\text{NHCH}_3$	${ m C_{13}H_{17}N_3O_4S}$	311.55	50.20 50.41	5.46 5.58	$13.52 \\ 13.57$		80	150-152 MeOH	
21	$\mathrm{CH_3}$	$3-\mathrm{NHCONHCH_3}$	${ m C_{12}H_{15}N_3O_5}$	281.26	51.18 50.88	$5.34 \\ 5.42$	$14.95 \\ 14.85$		89	$166-168$ $\mathrm{CH_3CN}$	
22	$\mathrm{CH_2CH_2Cl}$	$2\text{-OCH}(\mathrm{CH_3})_2$	$\mathrm{C_{14}H_{18}ClNO_5}$	315.74	53.32 53.69	5.70 5.61	4.44 4.25	а	62	154 - 156/0.2	
23	$\mathrm{CH_3}$	4-SCH ₃	$\mathrm{C_{11}H_{13}NO_{4}S}$	255.28	51.70 51.91	5.10 5.18	5.44 5.27	\boldsymbol{a}	84	72-74 EtOH	

 $Table\ 2$ Characterization of disubstituted phenylcarbamates (A)

No.	\mathbf{R}_{1}	$ m R^7$	$ m R^8$	Formula	M	Calc		/found	Ya	Yiel %	B.p. °C/ d /Torr M.p. °C/ /solvent
								70 21			n_{D}^{20}
24	$\mathrm{CH_{2}CH}\!=\!\mathrm{CH_{2}}$	3-CH ₃	5-CH_3	C ₁₄ H ₁₇ NO ₄	263.28	63.90 64.15	6.46 6.88	5.32 5.66	a	59	136/0.2
25	$\mathrm{CH_3}$	3-CH_3	$4-NO_2$	$C_{11}H_{12}N_2O_6$	268.21	$49.21 \\ 49.56$	$\begin{array}{c} 4.47 \\ 4.23 \end{array}$	$10.42 \\ 10.20$	\boldsymbol{b}	79	95-97 EtOH
26	$\mathrm{CH_3}$	3-CH_3	4-NO	$C_{11}H_{12}N_2O_5$	252.21	$52.33 \\ 52.19$	$\begin{array}{c} 4.75 \\ 4.98 \end{array}$	$11.01 \\ 11.35$	\boldsymbol{a}	81	118-120 EtOH
27	$ m CH_3$	3-CF_3	4-Cl	$\mathrm{C_{11}H_9ClF_3NO_4}$	311.63	$42.50 \\ 42.77$	$2.89 \\ 2.98$	4.49 4.70	a	69	127/0.2
28	$\mathrm{CH_3}$	$2-NO_2$	4-Cl	$\mathrm{C_{10}H_9ClN_2O_6}$	288.63	$\frac{41.55}{41.76}$	$\frac{3.10}{3.32}$	$9.71 \\ 9.56$	b	79	119-121 EtOH
29	$\mathrm{CH_3}$	$2\text{-CH}_2\text{OCH}_3$	$4-NO_2$	$C_{12}H_{14}N_2O_7$	298.27	$48.32 \\ 48.57$	$\frac{4.71}{5.08}$	$9.37 \\ 8.96$	b	81	$_{\rm EtOH}^{65-67}$
30	$ m CH_3$	$2\text{-CH}_2\text{SCH}_3$	5-CH_3	$\mathrm{C_{13}H_{16}NO_{4}S}$	283.30	55.18 55.32	$5.65 \\ 5.69$	$4.95 \\ 5.21$	b	95	142/0.1
31	$\mathrm{CH_3}$	2-CH ₂ SCN	4-NO ₂	$C_{12}H_{12}N_3O_4S$	294.28	49.00 48.87	$\frac{4.08}{4.23}$	$14.25 \\ 14.33$	a	91	$\begin{array}{c} 93-95 \\ \textbf{EtOH} \end{array}$
32	$\mathrm{CH_3}$	2-CH_3	3-OOCN(CH ₃)OOCCH ₃	${\rm C_{15}H_{18}N_2O_8}$	354.31	50.81 51.18	$5.08 \\ 5.34$	7.89 8.00		61	85—87 EtOH
33	$\mathrm{CH_3}$	$2\text{-}\mathrm{CH_2SC(S)N(CH_3)_2}$	$4-NO_2$	$\mathrm{C_{14}H_{17}N_3O_6S_2}$	387.42	43.47 43.53	4.38 4.46	$10.85 \\ 10.52$	b	86	113-115 EtOH
34 ^b	$\mathrm{CH_3}$	$2\text{-CH}_2\mathrm{SPS}(\mathrm{OCH}_3)_2$	$4-NO_2$	$\mathrm{C_{13}H_{17}N_{2}O_{8}PS}$	2	_	_	6.60		79	1.5864

Ya - method of preparation.

b~ — Calculated: 7.32% P, 15.11% S; found: 7.48% P, 15.38% S.

 $Table \ 3$ Characterization of trisubstituted phenylcarbamates (A)

				7.11			Calcula	ted/found	V a	Yield	M.p. °C/solvent
No.	$\mathbf{R^1}$	$ m R^9$	$ m R^{10}$	\mathbb{R}^{11}	Formula	M	% N	% X	Yu	%	$n_{\scriptscriptstyle m D}^{20}$
35	$\mathrm{CH_3}$	3-CH ₃	SCN	5-CH ₃	$C_{13}H_{14}N_2O_4S$	294.32	9.53 9.24	10.86 S 10.66 S	a	81	95-97 EtOH
36	$\mathrm{CH_3}$	2-Cl	NO_2	6-Cl	$\mathrm{C_{10}H_{18}ClN_2O_6}$	323.07	$8.68 \\ 9.00$	21.92 Cl 21.87 Cl	\boldsymbol{b}	93	98-100 MeOH
37	$\mathrm{CH_3}$	2-Br	NO_2	6-Br	$\mathrm{C_{10}H_8Br_2N_2O_6}$	411.09	$6.47 \\ 6.52$	38.85 Br 39.09 Br	b	92	$_{\rm EtOH}^{105-107}$
38	$\mathrm{CH_3}$	2-Br	$\mathbf{C}\mathbf{N}$	6-Br	$\mathrm{C_{11}H_8Br_2N_2O_4}$	392.00	$7.15 \\ 7.22$	40.70 Br 41.17 Br	\boldsymbol{b}	85	$^{140-142}_{\mathrm{CH_3CN}}$
3 9	$\mathrm{CH_3}$	2-I	CN	6-I	$\mathrm{C_{11}H_{8}I_{2}N_{2}O_{4}}$	486.06	5.75 5.70	52.20 I 52.37 I	\boldsymbol{b}	87	182-184 CH ₃ CN
40	$\mathrm{CH_3}$	2-Cl	Cl	5-Cl	$\mathrm{C_{10}H_8Cl_3NO_4}$	312.51	$\frac{4.46}{4.24}$	33.94 Cl 34.15 Cl	b	84	$\begin{array}{c} 100-102 \\ \text{EtOH} \end{array}$
41	$\mathrm{CH_{2}CH_{2}Cl}$	2-CH_3	NO_2	6-NO_2	$\mathrm{C_{12}H_{22}ClN_3O_8}$	361.68	$11.62 \\ 11.44$	9.38 Cl 9.65 Cl	b	48	$^{114-116}_{\mathrm{CHCl_3}}$
42	$\mathrm{CH_3}$	$2\text{-}\mathrm{CH}(\mathrm{CH_3})\mathrm{C_2H_5}$	NO_2	6-NO_2	$\mathrm{C_{14}H_{17}N_{3}O_{8}}$	354.29	$11.86 \\ 11.93$	-	b	83	82-84 MeOH
43	$\mathrm{CH_2CH}\!=\!\mathrm{CH_2}$	$2\text{-CH}(\mathrm{CH_3})\mathrm{C_2H_5}$	NO_2	6-NO_2	${ m C_{16}H_{19}N_3O_8}$	381.35	$11.03 \\ 10.92$	-	\boldsymbol{b}	81	1.5202
44	$\mathrm{CH_2CH_2Cl}$	$2\text{-CH}(\mathrm{CH_3})\mathrm{C_2H_5}$	NO_2	6-NO_2	$\mathrm{C_{15}H_{18}ClN_3O_8}$	403.77	$10.41 \\ 10.72$	8.81 Cl 8.55 Cl	\boldsymbol{b}	43	1.5312
45	$ m CH(CH_3)_2$	$2\text{-CH}(\mathrm{CH_3})\mathrm{C_2H_5}$	NO_2	6-NO_2	$\mathrm{C_{16}H_{21}N_{3}O_{8}}$	383.35	$10.94 \\ 11.04$	_	b	84	1.5261
46	CH_3	$2\text{-}\mathrm{CH}_2\mathrm{OC}_2\mathrm{H}_5$	NO_2	6-Cl	$\mathrm{C_{13}H_{15}ClN_2O_7}$	346.71	8.08 8.16	10.23 Cl 10.64 Cl	\boldsymbol{a}	84	1.5562
47	$\mathrm{CH_3}$	$2\text{-}\mathrm{CH}_2\mathrm{OC}_2\mathrm{H}_5$	NO_2	6-I	$\mathrm{C_{13}H_{15}IN_{2}O_{7}}$	438.17	$6.38 \\ 6.74$	28.90 I 29.32 I	\boldsymbol{a}	71	1.5673

 $\label{eq:Table 4} Table \ 4$ Characterization of tetra- and pentasubstituted phenylcar bamates (A)

SPESSORS STATE OF THE	per de la companya de							2.6	Calcula	ted/found	37.0	Yield	M.p. °C/solvent
No.	\mathbb{R}^1	\mathbb{R}^{12}	\mathbb{R}^{13}	\mathbb{R}^{14}	\mathbb{R}^{15}	\mathbb{R}^{16}	Formula	M	% N	% X	Ya	%	$n_{\scriptscriptstyle m D}^{'20}$
48	CH ₃	Br	CH ₃	NO_2	н	NO_2	C ₁₁ H ₁₀ BrN ₃ O ₈	392.12	10.69 10.82	20.35 Br 20.69 Br	b	71	122-124 EtOH
49	$ ext{CH}_3$	Cl	н	Br	Cl	\mathbf{Br}	$\mathrm{C_{10}H_{7}Br_{2}Cl_{2}NO_{4}}$	435.88	$3.21 \\ 3.48$	16.35 Cl 16.12 Cl	\boldsymbol{a}	69	$\begin{array}{c} 91-93 \\ \textbf{EtOH} \end{array}$
50	$ ext{CH}_3$	Br	$\mathrm{CH_3}$	SCN	$\mathrm{CH_3}$	\mathbf{Br}	$C_{13}H_{12}Br_2N_2O_4S$	452.11	$6.20 \\ 6.31$	35.42 Br 35.77 Br	a	89	$163-165$ $\mathrm{CH_3CN}$
51	$\mathrm{CH_3}$	Cl	$\mathrm{CH_3}$	NO_2	H	Cl	$\mathrm{C_{11}H_{10}Cl_{2}N_{2}O_{6}}$	337.09	8.30 8.41	21.03 Cl 20.88 Cl	b	70	85—87 EtOH
52	$ m CH_3$	\mathbf{Br}	$\mathrm{CH_3}$	NO_2	H	Br	$\mathrm{C_{11}H_{10}Br_{2}N_{2}O_{6}}$	426.01	6.56 6.78	37.52 Br 37.45 Br	b	90	95—97 EtOH
53	$\mathrm{CH}(\mathrm{CH_3})_2$	\mathbf{Br}	$\mathrm{CH_3}$	Cl	H	NO_2	$\mathrm{C_{13}H_{14}BrClN_2O_6}$	409.63	6.85 7.09	8.66 Cl 8.77 Cl	b	86	55-57 EtOH
54	$\mathrm{CH_8}$	Cl	H	Cl	Cl	Cl	$\mathrm{C}_{10}\mathrm{H}_7\mathrm{Cl}_4\mathrm{NO}_4$	349.96	4.03 4.36	40.80 Cl 41.04 Cl	b	89	104—106 MeOH
55	$ m CH_{3}$	Cl	Cl	Cl	Cl	Cl	$\mathrm{C}_{10}\mathrm{H}_6\mathrm{Cl}_5\mathrm{NO}_4$	381.49	$\frac{3.67}{3.82}$	46.51 Cl 46.81 Cl	b	92	110-112 MeOH
56	$\mathrm{CH_3}$	Cl	H	Cl	Cl	\mathbf{Br}	$\mathrm{C_{10}H_{7}BrCl_{3}NO_{4}}$	391.42	3.57 3.53	27.18 Cl 27.10 Cl	b	86	$^{112-114}_{\rm MeOH}$
57	$\mathrm{CH_3}$	Cl	Н	Cl	Cl	Ι	$\mathrm{C}_{10}\mathrm{H}_7\mathrm{Cl}_3\mathrm{INO}_4$	438.43	3.19 3.26	24.22 Cl 24.45 Cl	b	96	107-109 EtOH
58	$\mathrm{CH_3}$	Cl	н	Cl	Cl	NO_2	$\mathrm{C_{10}H_7Cl_3N_2O_6}$	357.32	7.84 8.06	29.74 Cl 29.80 Cl	b	94	$\begin{array}{c} 100-102 \\ \text{MeOH} \end{array}$
59	$ ext{CH}_3$	NO_2	$\mathrm{CH_3}$	Cl	н	NO_2	$\mathrm{C_{11}H_{10}ClN_3O_8}$	347.66	12.46 12.35	10.22 Cl 10.34 Cl	b	86	82—84 EtOH
60	$\mathrm{CH_3}$	\mathbf{Br}	$\mathrm{C}\mathbf{H_3}$	Cl	н	NO_2	$\mathrm{C_{11}H_{10}BrClN_2O_6}$	381.56	7.34 7.50	9.31 Cl 9.27 Cl	b	74	$\begin{array}{c} 90-92 \\ \textbf{EtOH} \end{array}$

Ya - method of preparation.

 $Table\ 5$ Characterization of carbamates (A)

No.	\mathbb{R}^1	$ m R^2$	Formula	M	Calc	ulated/fo	\mathbf{ound}	−Va	Yield	B.p. °C/Torr
No.			r ormuia	IVI.	% C	% н	% N	- Y u	%	M.p. °C/solvent $n_{\scriptscriptstyle \mathrm{D}}^{\scriptscriptstyle 20}$
61	$\mathrm{CH_3}$	$\mathrm{CH_{2}CH_{2}SC_{2}H_{5}}$	$\mathrm{C_8H_{15}NO_4S}$	221.26	$\frac{43.50}{43.72}$	$6.79 \\ 6.91$	$6.33 \\ 6.50$	c	78	110/0.3
62	$ m CH_3$	$\mathrm{CH_{2}CH_{2}OPh\text{-}4\text{-}Cl}$	$\mathrm{C_{12}H_{12}Cl_3NO_5}$	356.56	$40.46 \\ 40.21$	$\frac{3.37}{3.20}$	$3.93 \\ 4.02$		81	115-117 EtOH
63	$ m CH_3$	NHCOPh	$C_{11}H_{12}N_2O_5$	252.21	52.31 52.18	$\frac{4.76}{4.61}$	$11.11 \\ 11.42$		79	$\begin{array}{c} 100-102 \\ \text{EtOH} \end{array}$
64	$ m CH_3$	$\mathbf{CH_2CH} = \mathbf{CH_2}$	$C_8H_8N_4O_7$	272.17	$35.26 \\ 35.11$	$\frac{2.94}{2.78}$	$20.58 \\ 20.91$	b	69	202-205 CH ₃ CN
65	$\mathrm{CH_2CH_2Cl}$	I-Naphthyl	$C_{15}H_{14}CINO_4$	307.72	58.60 58.47	$\frac{4.56}{4.31}$	$4.51 \\ 4.29$		81	1.4921
66	CH ₃	8-Quinolyl	$\mathrm{C_{13}H_{12}N_2O_4}$	260.23	59.98 60.14	$\frac{4.61}{4.48}$	$10.74 \\ 10.40$	b	61	$\begin{array}{c} 118-120 \\ \text{EtOH} \end{array}$
67	CH_3	3,6-Pyridazinyl	$C_{12}H_{14}N_4O_8$	342.27	$42.05 \\ 41.81$	$\frac{4.08}{4.00}$	16.36 16.03	b	71	$\begin{array}{c} 163-165 \\ \text{EtOH} \end{array}$
68	$ m CH_3$	Pyridazin-4-yl-1-CH ₃ -5-Cl-6-oxo	$C_9H_{10}ClN_3O_5$	275.70	$39.28 \\ 39.01$	$\frac{3.64}{3.82}$	$15.25 \\ 14.90$	b	84	$\begin{array}{c} 120-122 \\ \text{EtOH} \end{array}$
69	$ m CH_3$	${\bf Pyridazin - 4 - yl - 1 - CH_3 - 5 - SC_2H_5 - 6 - oxo}$	$C_{11}H_{15}N_3O_5S$	301.31	$43.92 \\ 44.15$	$\frac{4.93}{5.12}$	$13.96 \\ 13.87$	\boldsymbol{b}	81	78-80 EtOH
70	CH ₃	Pyridazin-4-yl-1-Ph-5-Cl-6-oxo	$\mathrm{C_{14}H_{12}ClN_3O_5}$	337.70	$49.92 \\ 50.11$	$3.56 \\ 3.52$	$12.44 \\ 12.23$	b	89	$\begin{array}{c} 100-101 \\ \text{EtOH} \end{array}$
71	CH_3	Pyridazin-4-yl-1-Ph-5-OCH ₃ -6-oxo	$\mathrm{C_{15}H_{15}N_3O_6}$	333.29	$54.02 \\ 53.93$	4.48 4.52	$12.66 \\ 12.39$	b	79	$_{\rm ttOH}^{100-102}$
72	CH_3	Ph-4-NHC(SCH ₃)(NHCH ₃)OSO ₂ OCH ₃	$\mathrm{C_{14}H_{21}N_{3}O_{8}S_{2}}$	423.44	$39.72 \\ 39.25$	$\frac{4.96}{5.08}$	$9.94 \\ 9.71$		91	$166-168$ $\mathrm{CH_3COCH_3}$
73	CH ₃	Pyrazol-3-yl-1-Ph-5-CH ₃	$\mathrm{C_{14}H_{15}N_{3}O_{4}}$	289.28	$58.08 \\ 58.21$	5.18 5.01	$14.53 \\ 14.50$	a	78	1.5632
74	$ m CH_3$	Phthalimido	$\mathrm{C_{12}H_{10}N_2O_6}$	278.21	51.70 51.51	$3.59 \\ 3.68$	$10.03 \\ 10.26$	a	81	$^{128-130}_{\rm EtOH}$

Table 6 Characterization of thiocarbamates (B)

No.	\mathbb{R}^1	\mathbb{R}^3	El-	ormula M –		Calculated/found		Yield	B.p. °C/Torr
No.	K.		r ormuia	.MI	% N	% S	Ya	%	M.p. °C/solvent $n_{\mathbf{D}}^{\mathbf{so}}$
75	$\mathrm{CH_2CH_2Cl}$	$\mathrm{C_2H_5}$	$\mathrm{C_7H_{12}CINO_3S}$	225.67	6.23 6.34	14.21 14.42		91	86/0.2
76	CH ₃	$\mathrm{CH_2CH_2SC_2H_5}$	$\mathrm{C_8H_{15}NO_3S_2}$	237.32	5.90 6.09	27.00 27.14		69	121/0.2
77	CH ₃	Furfuryl	$\mathrm{C_9H_{11}NO_4S}$	229.24	6.11 6.00	$13.94 \\ 14.02$		82	130/0.25
78	CH ₃	Benzyl	$\mathrm{C_{11}H_{13}NO_{3}S}$	239.28	5.87 5.62	13.46 13.68		62	146/0.4
79	CH ₃	Ph-2,5-diCl	$\mathrm{C_{11}H_{10}Cl_3NO_3S}$	342.60	4.04 4.19	9.34 9.40		95	$\begin{array}{c} 90-92 \\ \text{EtOH} \end{array}$
80	CH ₃	Ph-pentaCl	$\mathrm{C_{10}H_6Cl_5NO_3S}$	397.46	$\frac{3.53}{3.71}$	$8.07 \\ 8.25$	b	93	192 — 194 Dioxan
81	$\mathrm{CH_2CH_2Cl}$	${\bf 2\text{-}Benzothiazolyl}$	$\mathrm{C_{12}H_{11}ClN_2O_3S_2}$	330.68	8.46 8.62	19.40 19.36	b	98	178-180 EtOH

Y^a — method of preparation.
b) Calculated: 31.00% Cl; found: 30.76% Cl.
c) Calculated: 44.70% Cl; found: 44.41% Cl.
d) Calculated: 10.72% Cl; found: 10.49% Cl.

Table 7 Characterization of urea (C)

	701	70.17	77	17	Calc	ulated/fo	ound	- Va	Yield	B.p. °C/Torr
No.	$\mathbf{R^1}$	$\mathbf{R^{17}}$	Formula	M	% C	% н	% N	- ұа	%	M.p. °C/solvent
82	CH(CH ₃) ₂	NHCH ₂ CH(CH ₃) ₂	$C_{10}H_{20}N_2O_3$	216.27	55.32 55.56	9.23 9.45	12.96 12.74	d	76	83/0.2
83	$\mathrm{CH_2CH_2Cl}$	$N(\mathrm{CH_2CH}\!=\!\mathrm{CH_2})_2$	$\mathrm{C_{11}H_{17}CIN_{2}O_{3}}$	260.72	50.66 50.88	$\begin{array}{c} 6.52 \\ 6.58 \end{array}$	10.75 10.66	d	77	125/0.4
84	$\mathrm{CH_3}$	Morpholino	$\mathrm{C_8H_{14}N_2O_4}$	202.20	$47.32 \\ 47.44$	6.91 6.68	$13.88 \\ 13.90$	d	67	117/0.4
85	$\mathrm{CH_{2}CH}\!=\!\mathrm{CH_{2}}$	NH-furfuryl	$\mathrm{C_{11}H_{14}N_{2}O_{4}}$	238.23	55.26 55.40	$5.87 \\ 6.02$	11.75 11.45	d	92	122/0.2
86	$CH_2CH = CH_2$	NHPh-3-CH ₃	${ m C_{18}H_{16}N_2O_3}$	248.27	62.71 62.88	$\begin{array}{c} \textbf{6.42} \\ \textbf{6.74} \end{array}$	$11.25 \\ 11.66$	d	77	137/0.2
87	$\mathrm{CH_{2}CH_{2}Cl}$	NHPh-3-Cl	$\mathrm{C_{11}H_{12}ClN_2O_3}$	291.11	46.42 46.54	$4.13 \\ 4.32$	9.63 9.48	d	96	$\begin{array}{c} 100-102 \\ \textbf{EtOH} \end{array}$
88	$\mathrm{CH_2CH}\!=\!\mathrm{CH_2}$	NHPh-4-F	$\mathrm{C_{12}H_{13}FN_{2}O_{3}}$	252.24	57.02 57.16	5.19 5.23	11.06 10.85	d	91	60-62 Cyclohexane
89	CH ₃	NHPh-4-Cl	$\mathrm{C_{10}H_{11}ClN_2O_3}$	242.64	$49.45 \\ 49.52$	4.53 4.68	$11.52 \\ 11.24$	d	95	$\begin{array}{c} 130-132 \\ \text{EtOH} \end{array}$
90	$\mathrm{CH}(\mathrm{CH_3})_2$	NHPh-4-Cl-3-CF ₃	$\mathrm{C_{13}H_{14}ClF_3N_2O_3}$	338.71	46.54 46.65	4.13 4.22	$8.26 \\ 7.97$		94	83-85 EtOH
91	$\mathrm{CH_2CH_2Cl}$	NHPh-2,4,5-triCl	$\mathrm{C_{11}H_{10}Cl_3N_2O_3}$	360.00	36.62 36.80	$2.78 \\ 2.86$	7.69 7.69	d	98	$124-126$ $\mathrm{CH_{8}COCH_{3}}$
92	$\mathrm{CH_2CH}\!=\!\mathrm{CH_2}$	NH-benzyl	${ m C_{13}H_{16}N_{2}O_{8}}$	248.27	63.72 63.88	6.44 6.58	$11.26 \\ 11.36$	d	79	135/0.2
93	$\mathrm{CH_2CH}\!=\!\mathrm{CH_2}$	$N(\mathrm{Ph})\mathrm{CH}(\mathrm{CH_3})_2$	$\rm C_{15}H_{20}N_{2}O_{3}$	276.32	65.02 65.16	7.24 7.33	$10.12 \\ 9.92$	d	79	124/0.05

Table~8 Infrared spectral data of some substances (cm $^{-1}$)

No.	$\nu(C=O)$	v(C−O)	$\nu(C=C)$	$\nu(\mathbf{N}-\mathbf{H})$	Other
14	1770	1136	1620	3372	
	1736				
	1683				
15	1758	1135	1608	3290	
	1740				
	1685				
21	1788	1135	1615	3355	
	1708				
	1690				
17	1788	1122	1610	3355	
	1695				
20	1770	1110	1588	3440	v(C = N) 1610
	1715				
19	1765	1155	1620	3335	
	1740				
	1678				
18	1760	1160	1610	3195	
	1720				
	1690				
33	1760	1130	1618		$v_{as}(NO_2) 1520$
	1740				$\nu_{\rm s}({ m NO_2}) \ 1335$
25	1775	1155	1625		$v_{as}(NO_2)$ 1520
	1730				$v_8(NO_2) 1335$
26	1785	1125	1634		$\nu(NO) 1670$
	1762				
41	1770	1100	1602		vas(NO2) 1534, 1528
					$v_8(NO_2)$ 1344, 1325
38	1775	1095	1705		$\nu(C \equiv N) 2238$
	1738				
58	1770	1100	1718		$v_{as}(NO_2) 1554$
	1758				$v_{\rm s}({ m NO_2}) \ 1332$
71	1762	1135	1600		v(C=N) 1628
	1750				2002
	1652				
68	1775	1120	1618		$\nu(C=N)$ 1670
	1741				
	1720				
70	1812	1140	1616		v(C=N) 1675
	1770				
	1745				
66	1770	1147	1592		v(C = N) 1690
20 0000	1728	20000000000000000000000000000000000000	::::::::::::::::::::::::::::::::::::::		AND SOME STATES
67	1768	1147	1614		v(C=N) 1665
5.6	1728		0-00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0		V =
89	1740	1172	1605	3205	
5.2	1700	1-		a-ra	
92	1732	1168	1652	3348	
	1695				
82	1732	1180		3348	
	1692				
80	1738	1180	1590		v(C=N) 1630
	1670				,, ===,,
75	1745	1160	1630		
	1670				
79	1733	1188	1645		
	1685				

new esters of carbamic and thiocarbamic acids and of urea with the purpose to investigate their pesticidal activity. Their preparation was accomplished by treatment of the corresponding hydroxy and mercapto compounds or amines with N-alkoxy-carbonyl-N-methylcarbamoyl chloride (Scheme 1) in acetone, methyl ethyl ketone, acetonitrile, benzene, water, or in the mixture of organic solvent and water in the presence of an agent binding the formed hydrogen chloride. The synthesized compounds are reviewed in Tables 1-7.

In the spectra of carbamates (A) strong absorption bands belonging to the stretching vibrations of C=O bonds were observed in the region of $1695-1770 \,\mathrm{cm^{-1}}$ $(v_{\rm as}(\mathrm{C=O}))$ and in the region of $1758-1812 \,\mathrm{cm^{-1}}$ $(v_{\rm s}(\mathrm{C=O}))$. The spectra of compounds containing another C=O group showed 3 bands of C=O bonds. In the spectra of thiocarbamates (B) $v_{\rm as}(\mathrm{C=O})$ was observed at $1670-1685 \,\mathrm{cm^{-1}}$ and $v_{\rm s}(\mathrm{C=O})$ at $1733-1745 \,\mathrm{cm^{-1}}$. The spectra of the derivatives of urea (C) revealed intense bands $v_{\rm as}(\mathrm{C=O})$ in the region of $1692-1700 \,\mathrm{cm^{-1}}$ and $v_{\rm s}(\mathrm{C=O})$ in the region of $1732-1740 \,\mathrm{cm^{-1}}$. The spectrum of the compound 18 was supposed to display 4 absorption bands $v(\mathrm{C=O})$ due to the presence of two different groupings of C=O bonds. However, the bands were overlapped and only 3 intense bands were observed in the spectrum (Table 8).

Table 9 $A caricidal \ activity \ (LC_{50} \ in \ p.p.m.) \ of some \ compounds$

Compound	45	43	40	Acrex (Standard)
Tetranychus urticae косн	10.0	5.0	1.4	36.0

 ${\it Table~10}$ Fungicidal-antipowdery mildew activity (ED $_{50}$ in p.p.m.) of some compounds

Compound	46	58	54	Karathane (Standard)
Erysiphe graminis DC.	11.9	11.4	18.6	21.4
Erysiphe cichoracearum DC.	7.6	68.0	53.5	1.2

Beside preparation and examination of pesticidal activity of the above-mentioned compounds the aim of this work was to compare the insecticidal activity of some derivatives with that of the known aryl N,N-dimethylcarbamates, *i.e.* to follow the effect of the carboxyl group introduced into the molecule. It was found that the insecticidal activity of (A) decreased either slightly or essentially. Similarly, introduction of carboxyl group into the molecule of thiocarbamates (B) resulted in a loss of herbicidal properties. From ureas, 3-aryl-1,1-dimethylureas and 3-aryl-1-methyl-1-methoxyureas are mostly used in practice. The compounds (C) containing carboxyl or carbonyl groups also lost their herbicidal properties.

Table~11 Herbicidal activity (postemergence application 5 and 0.7 kg/ha) of some compounds

Test-object	37	•	39)	51			IBP dard)
Avena sativa L.	0	0	0	0	0	0	3	0
Echinochloa crus-galli (L.)	2	0	5	0	2	0	5	0
Beta vulgaris L.	5	0	5	5	5	0	5	5
Persicaria vulgaris WEBB. et MOQU.	5	5	5	5	5	5	5	5
Chenopodium album L.	5	0	5	5	5	0	5	5
Brassica denacea L.	5	3	5	5	5	0	5	5
Pisum sativum L.	2	0	2	0	1	0	3	0
Avena fatua L.	0	0	1	0	0	0	3	0
Hordeum sativum L.	0	0	0	0	0	0	3	0
Vicia sativa L.	5	0	5	5	5	0	5	0
Fagopyrum sagitatum L.	5	5	5	5	5	5	5	5
Sinapis alba L.	5	5	5	5	5	0	5	5
Amarantus retroflexus L.	5	0	5	5	5	0	5	0
Linum usitatissivum L.	3	0	5	5	0	0	5	0
Zea mays L.	0	0	3	0	0	0	1	0
Triticum sativum L.	0	0	0	0	0	0	3	0

Insecticidal and ovicidal activities of the compounds presented in Tables 1—7 were found to be low with respect to the applied concentrations. Several compounds effected a very good acaricidal activity; the compounds 45, 43, and 40 were more active than the used standard Acrex (Table 9). In the tests for fungicidal activity some compounds had good antipowdery mildew activity, namely the compounds 46, 58, and 54, which were more active against Erysiphe graminis DC. than the standard Karathane (Table 10). Several compounds were fairly active but did not reach the level of the used standards. In tests for herbicidal activity the compounds 37, 39, and 51 (Table 11) were very active in the second screening when compared with the used standard. However, in more exact examinations, i.e. at lower concentrations their activity was found to be lower than that of the standard.

Experimental

Analytical and physicochemical data of the synthesized compounds are presented in Tables 1-7. Melting points were determined on a Kofler stage.

Infrared spectra were taken with a Specord 71 IR apparatus in Nujol except the compounds 75, 92, and 82 which were measured in carbon tetrachloride.

Procedure A

To sodium hydroxide (0.1 mole) water (10 ml) and acetone (100 ml) were added. After dissolving, the appropriate hydroxy derivative (0.1 mole) and N-alkoxycarbonyl-N-methylcarbamoyl chloride (0.1 mole) were added at $0-10^{\circ}\mathrm{C}$ under stirring. Stirring was continued for 10 min at the same temperature and for additional 30 min at reflux. The reaction mixture was cooled and poured into water (400 ml) and the precipitated solid was filtered and purified by orystallization. When an oily compound was

formed, this was extracted with benzene (100 ml) and the benzene layer was washed with water. Upon removal of benzene by distillation under reduced pressure, the residue was redistilled at underpressure. If the compound decomposed during the attempted distillation, it has been dried at 80°C/0.2 Torr for 30 min.

Procedure B

To sodium salt of the corresponding hydroxy or mercapto compounds (0.1 mole) in acetonitrile (80 ml), N-alkoxycarbonyl-N-methylcarbamoyl chloride (0.1 mole) was added under stirring. The reaction mixture was stirred at reflux for 1 hr, cooled, and poured into water (400 ml). Further processing was similar as in the procedure A.

Procedure C

To the p roper hydroxy or mercapto compounds or urea (0.1 mole) in benzene (120 ml), triethylamine (0.1 mole) and N-alkoxycarbonyl-N-methylcarbamoyl chloride (0.1 mole) were added under stirring at $15-20^{\circ}\text{C}$. Stirring was continued for 3 hrs at the same temperature. The reaction mixture was washed with water (200 ml) and the benzene layer was processed as in the procedure A.

Procedure D

To the amino derivative (0.2 mole) in benzene (100 ml), N-alkoxycarbonyl-N-methyl-carbamoyl chloride (0.1 mole) was added under stirring at $10-15^{\circ}$ C. Stirring was continued for 1 hr at 60°C. The cooled reaction mixture was washed with water (200 ml) and processed as in the procedure A.

3-(3'-Methylureido)phenyl N-methoxycarbonyl-N-methylcarbamate (21)

To m-aminophenol (0.1 mole) in dioxan (80 ml), methyl isocyanate (0.1 mole) and triethylami ne (0.1 ml) were added under stirring at 10°C. The reaction mixture was stirred for 1 hr at 40°C and for another hour at 80°C. After cooling to 0°C, triethylamine (0,1 mole) a nd N-methoxycarbonyl-N-methylcarbamoyl chloride (0.1 mole) were added to the mixt ure under stirring. Stirring was continued for 2 hrs at 50°C and the cooled reaction mixture was poured into water (400 ml). The precipitated solid was filtered and purified by crystallization.

3-(M ethoxycarbonylamino)phenyl N-methoxycarbonyl-N-methylcarbamate (16)

To m-aminophenol (0.1 mole) and potassium carbonate (0.125 mole) in dioxan (100 ml), methyl chloroformate (0.1 mole) was added at $0-5^{\circ}$ C. Stirring was continued for 30 min at the same temperature and for additional 30 min at 25°C. To the cooled reaction mixture at 0°C first triethylamine (0.1 mole), then N-methoxycarbonyl-N-methylcarbamoyl chloride (0.1 mole) were added. The mixture was stirred for 30 min at 40°C, cooled, and poured into water (400 ml). The precipitate was extracted with chloroform (150 ml). After the evaporation of chloroform the residue was processed similarly as in the procedure A.

3-(3'-Methoxycarbonyl-3'-methylureido) phenyl N-methoxycarbonyl-N--methylcarbamate (18)

To m-aminophenol (0.05 mole) in acetone (100 ml), powdery sodium hydroxide (0.1 mole) was added under stirring. At 10°C N-methoxycarbonyl-N-methylcarbamoyl chloride (0.1 mole) was added and the solution was stirred for 40 min at 40°C. The cooled reaction mixture was poured into water (400 ml) from which a white crystalline substance crystallized during the night.

3-[4-(N-Methoxycarbonyl-N-methylcarbamoyloxy)phenyl]-1,2-dimethylisothiouronium methylsulfate (72)

To 4-(3-methylthioureido)phenyl N-methoxycarbonyl-N-methylcarbamate (46 g) in acetone (125 ml), dimethylsulfate (16.7 ml) was added under stirring. Stirring was continued for 5 hrs at reflux. After cooling, the solid was filtered off and washed with acetone. This compound had not to be purified for a further use.

4-(1,2-Dimethyl-3-isothioureido) phenyl N-methoxycarbonyl-N--methylcarbamate (20)

To the compound 72 (33 g) suspended in water (500 ml), calcium carbonate was added in portions to neutral reaction under vigorous stirring at 13°C. Then chloroform (150 ml) was added. The chloroform layer was separated, washed with water, and dried. Upon evaporation of chloroform, the residue was purified by crystallization.

Pesticidal activity

Insecticidal activity was followed on *Musca domestica* L. and *Calandra granaria* L., systemic insecticidal activity on *Macrosyphoniella sanborni* THEOB., acaricidal activity on *Tetranychus urticae* KOCH, ovicidal activity on eggs of *Tetranychus urticae* KOCH, and contact insecticidal activity on *Aphis fabae* scop.

Fungicidal activity was determined by the *in vitro* as well as *in vivo* methods. The inherent activity was followed on the spores of fungi *Sclerotinia fructicola* (WINT.), Aspergillus niger tiegh, Fusarium nivole (fr.) ces., Alternaria sp., and Stemphylium sarcinoformae (CAV.) WITHSHIRE by the Sharvell method. The antipowdery mildew activity was tested on the living plants of barley, sort Dunajský trh (Erysiphe graminis DC.), on cucumbers, sort Znojemské (Erysiphe cichoracearum DC.), and on tomatoes (Phytophtora infestans DE BY).

Herbicidal activity was determined by the method of preemergence (into the soil) and postemergence (to the leaf) applications using the following test-objects: Avena sativa L., Polygonum persicaria, Fagopyrum sagitatum L., and Sinapis alba L.

Methods for the determination of pesticidal activities on the individual test-objects were published earlier [10, 11].

Acknowledgements. The author wishes to express his gratitude to Mrs M. Révészová and Mrs V. Tesařová for elemental analyses, the Department of Biology for examining pesticidal activities, and Dr T. Juhásová for recording the i.r. spectra.

References

- 1. Lambrech, J. A., US 2903478 (1958).
- 2. Lambrech, J. A., US 3009855 (1959).
- 3. Metcalf, R. I., Fukuto, T. R., and Winton, M. Y., J. Econ. Entomol. 53, 828 (1960).
- Hopkins, A. R. and Taft, H. M., J. Econ. Entomol. 58, 746 (1965).
- 5. De Rose, Agron. J. 43, 139 (1951).
- 6. Hopkins, T. R. and Pullen, J. W., US 2906614 (1959).
- 7. Herrett, R. A. and Berthold, R. V., Science (Washington) 149, 191 (1965).
- 8. Monsanto Chemical Comp., Brit. 882111 (1958).
- Perkow, W., Wirksubstanzen der Pflanzenschutz- und Schädlingsbekämpfungsmittel. (Russian translation.) Verlag Paul Parey, Berlin, 1971.
- 10. Demečko, J. and Konečný, V., Agrochémia (Bratislava) 10, 5 (1970).
- 11. Furdík, M., Konečný, V., Šály, A., and Truehlik, Š., Acta Facult. Rer. Natur. Univ. Comenianae (Chimia) XII, 45 (1968).

Translated by A. Kardošová