Isothiocyanates. XLVIII. Preparation and mass spectra of 1,2,3-thiadiazoles

"M. UHER, "A. RYBÁR, "A. MARTVOŇ, and J. LEŠKO

"Department of Organic Chemistry, Slovak Technical University, 880 37 Bratislava

> Drug Research Institute, 801 00 Bratislava

*Laboratory of Mass Spectrometry, Slovak Technical University, 880 37 Bratislava

Received 27 May 1975

The preparation of 4-methyl-5-(R-amino)-1,2,3-thiadiazoles from the appropriate isothiocyanates and an ethereal solution of diazoethane is described and mass spectra of the synthesized thiadiazoles are interpreted.

Описывается приготовление 4-метил-5-(R-амино)-1,2,3-тиадиазолов реакцией изотиоцианатов с эфирным раствором диазоэтана и обсуждаются масс-спектры синтезированных тиадиазолов.

The reaction of substituted phenyl isothiocyanates with diazoethane has already been reported [1], as well as that of acyl isothiocyanates with the same reagent [2]. 4-Methyl-5-phenylamino-1,2,3-thiadiazole has been synthesized to study the mass spectral fragmentation [3].

In this part we report the preparation of 4-methyl-5-(R-amino)-1,2,3-thiadiazoles from 4-substituted phenyl isothiocyanates, or 2-naphthyl isothiocyanate and diazoethane. The yields of the synthesized thiadiazoles (Table 1) indicate similar reactivities of diazoethane and diazomethane in reactions with aromatic isothiocyanates [4].

Scheme 1

Fig. 1. Mass spectrum of 4-methyl-5-(4-methoxyphenyl)amino--1.2.3-thiadiazole.

The ultraviolet spectra of 4-methyl-5-(R-amino)-1,2,3-thiadiazoles are characterized by two absorption maxima and a shoulder in the 278—292 nm region (Table 1).

The mass spectra revealed relatively intense molecular ion peaks (Figs. 1—5). The principal fragmentation pathway of 1,2,3-thiadiazoles involved the fission of a nitrogen molecule to form $[M-N_2]$; ions [5]. Depending on substituents either a thioketal [6] a, or a cyclic structure b [3] was presumed for this radical ion (Scheme 1).

Structure b could explain the elimination of the CH₃CS radical from the species $[M-N_2]$; of 4-methyl-5-phenylamino-1,2,3-thiadiazole [3]; this possibility was examined with derivatives of 4-methyl-5-(R-amino)-1,2,3-thiadiazoles. The fragmentation of 4-methyl-5-(4-methoxyphenyl)amino-1,2,3-thiadiazole is shown in Schemes 2 and 3. The composition of the more important peaks was obtained from high resolution measurements

Fig. 2. Mass spectrum of 4-methyl-5-(4-ethoxyphenyl)amino--1,2,3-thiadiazole.

218

Fig. 3. Mass spectrum of 4-methyl-5-(4-methylthiophenyl)amino-1,2,3-thiadiazole.

Fig. 4. Mass spectrum of 4-methyl-5-(4-carbmethoxyphenyl)amino -1,2,3-thiadiazole.

Fig. 5. Mass spectrum of 4-methyl-5-(4-iodophenyl)amino-1,2,3-thiadiazole.

219

Table 1
Characteristic data of 4-methyl-5-(R-amino)-1,2,3-thiadiazoles

	Formula	М	Calculated/found		Yield	M.p.	λ _{max I} , nm	$\lambda_{\max H}$, nm
R			% N	% S	%	°Ć	log ε	log ε
Phenyl	C ₉ H ₉ N ₃ S	191.3	-	_	42.2	187—188	249, 282 sh 3.90	326 4.18
4-Methoxyphenyl	$C_{10}H_{11}N_3OS$	221.3	_	_	33.2	168—170	249, 284 sh 3.95	326 4.08
4-Ethoxyphenyl	$C_{11}H_{13}N_3OS$	235.3	_	_	30.5	176—177	250, 281 sh 3.94	328 4.07
4-Carbmethoxyphenyl	$C_{11}H_{11}N_3O_2S$	249.3	16.86 16.99	12.86 12.60	45.2	173—174	274, 292 sh 3.98	339 4.38
4-Chlorophenyl	C ₉ H ₈ CIN ₃ S	225.7	_	_	52.6	171—172	253, 286 sh 3.79	327 3.99
4-Iodophenyl	C ₉ H ₈ IN ₃ S	317.1	13.25 13.30	_	50.1	199—201	256, 285 sh 4.11	330 4.26
4-Methylthiophenyl	$C_{10}H_{11}N_3S_2$	237.3	17.70 17.53	27.02 26.89	32.3	191—193	266 4.16	335 4.22
2-Naphthyl	$C_{13}H_{11}N_3S$	241.3	17.41 17.37	13.29 13.18	33.4	194—195	250, 278, 286 sh 4.44	339 4.23

a) According to [3] the m.p. is 180—181°C, yield 45%; sh — shoulder.

$$CH_{2}O \longrightarrow NH - C \longrightarrow$$

(Table 2). The metastable transitions in the first-field free region were in cases m/e 193 $\rightarrow m/e$ 134 and m/e 193 $\rightarrow m/e$ 133 verified by high-voltage scan technique [7]. The fission of CH₃CHS from the [M—N₂]¹ radical ion could be rationalized by a hydrogen migration due to a possible equilibrium of the two contributing structures of this ion (Scheme 3).

Scheme 3

Table 2

Composition of some ions in the mass spectrum of 4-methyl-5-(4-methoxyphenyl)amino-1,2,3-thiadiazole

Ion (m/e)	Mass		Composition	Ion	Mass		Composition	
	found	calculated	Composition	(<i>m/e</i>)	found	calculated	Composition	
1	93	193.0557	193.0561	C ₁₀ H ₁₁ NOS	103	103.0414	103.0422	C_7H_5N
15	92	192.0476	192.0483	$C_{10}H_{10}NOS$	95	95.0504	95.0497	C_6H_7O
1	78	178.0326	178.0324	C ₉ H ₈ NOS	92	92.0279	92.0262	C ₆ H ₄ O
1:	50	150.0383	150.0377	C_8H_8NS	77	77.0380	77.0391	C ₆ H ₅
1.	34	134.0605	134.0606	C_8H_8NO	64	64.0319	64.0313	C ₅ H ₄
1:	33	133.0528	133.0528	C ₈ H ₇ NO	59	58.9966	58.9955	C_2H_3S
1	22	122.0605	122.0606	C ₇ H ₈ NO	45	44.9802	44.9799	CHS

221

The fragmentation of further 1,2,3-thiadiazole derivatives resembled that of 4-methyl-5-(4-methoxyphenyl)amino-1,2,3-thiadiazole. It has been found that $CH_3\dot{C}S$ or CH_3CHS were eliminated from radical ions $[M-N_2]^{\ddagger}$, so that the structure b of the $[M-N_2]^{\ddagger}$ radical ion is reasonable [3].

The p.m.r. spectrum of 4-methyl-5-phenylamino-1,2,3-thiadiazole measured in deuteriochloroform and hexadeuteriodimethyl sulfoxide mixture evidenced the structure proposed for this compound.

Experimental

Phenyl isothiocyanate is commercially available; 4-substituted phenyl isothiocyanates were prepared according to [8], 2-naphthyl isothiocyanate according to [9] and the ethereal solution of diazoethane according to [10].

The ultraviolet spectra of the synthesized derivatives were measured with a UV VIS (Zeiss, Jena) spectrophotometer in 10 mm cells in the 200—350 nm region; concentration 3 to 5×10^{-5} M. The mass spectra were taken with an MS 902 S (AEI Manchester) spectrometer with a direct inlet system at a ionizing electron energy 70 eV, trap current 100 μ A at a constant temperature of the ionizing chamber varying between 70 and 110°C with respect to the volatility of the sample. The p.m.r. spectrum was recorded with a BS 847 C (Tesla) apparatus at 25°C.

4-Methyl-5-(R-amino)-1,2,3-thiadiazoles

An ethereal solution of diazoethane containing 0.01 mole of the reagent was dropwise added to a solution of the respective isothiocyanate (0.01 mole) in ether (25 ml). The reaction mixture was allowed to stand for 3—4 days in a well closed flask at room temperature. In course of the reaction the colour of the reaction mixture underwent changes and possibly a crystalline product was formed. Crystals were filtered off by suction and the filtrates were concentrated using a vacuum evaporator. The final products were crystallized from ethanol, chloroform or acetone. Characteristic data of compounds synthesized are listed in Table 1.

The p.m.r. spectrum of 4-methyl-5-phenylamino-1,2,3-thiadiazoles revealed following signals on the δ scale in p.p.m.: 2.61 (3H, s, CH₃), 6.9—7.5 (5H, m, aromat, H), 9.07 (H, s, NH).

References

- 1. Tišler, M., Hrovat, H., and Machiedo, N., Croat. Chem. Acta 34, 183 (1962).
- 2. Goerdeler, J. and Gnad, 3., Chem. Ber. 99, 1618 (1966).
- 3. Zeller, K. P., Meier, H., and Müller, E., Tetrahedron 28, 1352 (1972).
- 4. Uher, M., Rybár, A., Martvoň, A., and Leško, J., Collect. Czech. Chem. Commun. 41, 1182 (1976).
- 5. Millard, B. J. and Pain, D. L., J. Chem. Soc. (C) 1970, 2042.
- 6. Zeller, K. P., Meier, H., and Müller, E., Org. Mass Spectrom. 5, 373 (1971).
- 7. Jennings, K. R., J. Chem. Phys. 43, 4176 (1965).
- 8. Uher, M., Antoš, K., Kristian, P., and Drobnica, L., Chem. Zvesti 21, 44 (1967).
- 9. Uher, M. and Antoš, K., Chem. Zvesti 22, 439 (1968).
- 10. Organic Syntheses, Coll. Vol. 3, p. 119. Wiley, New York, 1967.

Translated by Z. Votický