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An equation for the dependence of activities of a given substance in liquid and solid
solutions on the temperature of primary crystallization of the substance was developed
on the basis of the Planck function. The analysis of the course of the liquidus curve near
the melting point of the pure substance shows that the objective difference between the
calorimetrically and cryometrically determined values of the melting enthalpy of the
discussed substance is a sufficient (though not necessary) condition for the existence of
limited solid solutions.

Ha ocHoBanuu ¢yukunu [lnaHka GblIO BbIBEAEHO YPaBHEHME I 3aBHCUMOCTH
aKTMBHOCTEM NAaHHOTO BELIECTBA B XHAKOM M TBEPAOM pacTBOpax OT TeMIepaTypbl
NepPBUYHON KPUCTANIU3aUMH. AHAN3 XOa KPUBbIX MJIAaBKOCTH BOIU3M TOYKM niasie-
HMSL YUCTOTO BEILECTBA MOKA3bIBaeT, YTO O6BEKTUBHAA PA3HULIA MEXAY KaJlOpPUMETPH-
HYeCKH M KPUOMETPHYECKM HAWIEHbIM 3HAYEHHEM 3HTANbIHUU TNJABJIECHUA, SABISETCH
AOCTATOYHBIM (XOTS U He HEOOXOZHMbIM) YCIIOBUEM CYLUECTBOBAHMSI OrPaHHYEHHBIX
TBEPAbIX PaCTBOPOB B CHCTEME [JaHHOTO THNa.

Even though the basic relations for the equilibrium in systems of the given type
are known [1—3], so far no detailed analysis of the derivation of these relations

seems to be performed, nor the course of the liquidus and solidus curves for high
concentrations of the basic substances has been analyzed.

The dependence f(a., a}) = F(T,) for systems of the given type

Let us consider a binary condensed system at P =const in which limited solid
solutions exist. For thermodynamic equilibrium in points **1’" and 2" (Fig. 1) with
respect to the component B, it holds

B'2B; G,=G;

and thus also lG",J B [G_;J

T T ()

(In further considerations we omit the index **B”.)

With an infinitesimal change of the independent variables T and P both sides of
eqn (1) also change, viz., the term on the left side by d(G'/ T).,, that on the right
side by d(G*/T).,. For equilibrium it again holds

cqs
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Fig.1. Phase diagram of a binary condensed
system A—B, in which the mutual limited solu-
bility in the solid state of components occurs.

A B
(G'/T).,,+d(G'T),,=(G/T),,+d(G"/T),, (2)
then with respact to eqn (/) the relation is valid
d(G'/T).,=d(G/T),, (3)

G'=f(T, x")p; G =T, x),,
d(G'/T).,=[3(G"T)/3T],, dT,,+[3(G"/T)/3x), - dx.,

Choice of the standard states

Let us take as standard state the state of the pure undercooled substance B at the
temperature T Thus if x,— 1, a,— x;,— 1. The exact differential on the left side
of eqn (3) can be further rearranged as follows

d(G'/T).,=[8(G*'+ RT In a"/T)/3T),, dT., +
+[3(G™" +RTIna'/T)/3x]p,+ dxeq »

d(G'/7).,=[3(G*/T)/3T),,-dT.,+ R[3In a'/3T),,-dT,, +
+[3(G™/T)/3x]p + dx,,+ R[3In a'/3x], ;- dx,

cq

After applying the isobar equation we obtain

N
d(GT), =~ T, + R dIna, (3a)

as the equation holds
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dIna' (T, x),=[3Ina'/3T],, - dT+[3 In a'/3x], ;- dx
Analogically we find that

d(G*/T),, = —H? dT.,+RdIna, (3b)

In this case the standard state of the pure solid substance B at the temperature 7
has been chosen. Thus it holds that if xj;— 1, ay—x3;— 1. Introducing the
corresponding term from eqns (3a) and (3b) into eqn (3), we get

- (H"/T*)dT.,+RdIna,,= - (H"/T*)dT,,+R dIna,
Rearranging,
dIn (a'/a%).,=(AH"""*/RT*)dT,,, (4)
where AH"""*= H"'— H"*
Thus we have established the differential form of the fundamental equation
f(ai, a?)., =F(T)

By intégrating eqn (4) we obtain

Tt Nal ‘T'AH().I/().s
1__ s — .
JT dlna JT dina JT RT dT,, (5)

Because both terms @' and a* equal one at T, the left side of eqn (4) becomes
—1In (a'/a*). Then rearranging eqn (5) we may write

'ﬂAHn.m).s
— 1 s = ®
(In a'/a%),, JT RT dr,, (6)

It holds further that
dAH().I/().s=AC;‘l/().s dT

Integrating this equation we find
- -
J d AH()J/(LS = AH‘;:'I/O.S —_ AH’\_’)_,I/U.S = J ACILI O.s d T
T T
The quantity AHY** will be denoted by AH"=const. Consequently,
B
AH(;:I/O.S — AHT — J AC’)J.I.’().S d T
T

Therefrom by substitution into eqn (6 ), integrating and rearranging we may write

L(m [ .
ln(a'/a“)cq=%{'--(1/7"‘—1/T)+ﬁ,J ?“ ACy' ™ -dT|dT, (7)
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Let us suggest that the molar hecat capacity change may be represented by an
equation of the form

ACY"™ = Aa+ AbT + AcT?

Then egn (7) can be modified into the following form
In (a'/a*),,=(AH'/R) (1/T'=1/T)+(Aa/R) [T/T-1-In(T/T)]+
+(Ab/2R) (TY/T-2T +T|+(Ac/2R) (1/T—-1/T)? (8)

If AC,'"""=0, a=1, we obtain the well-known generalized LeChatelier—
—Schroder equation for the course of liquidus curves in simple eutectic systems.

Regularities of the courses of the liquidus curves near the melting point
of the pure component for systems of the given type

In this case, since the temperature interval [ T, T'] is comparatively small (some
°C only), we may neglect in eqn (&) all terms containing ACy""* and we may write
In (a'/a).,=(AH'/R) (1/T"—=1/T) (9)
Therefrom
Ina,,=(AH'/R) (1/T'=1/T)+In a, (10)
The temperature dependence of the activity of the given component in the liquid
phase may be expressed as follows
Ina,=(AH*/R) (1/T'—1/T) (11)
Evidently the term AH* is of the same physical units as AH". By insertion from
eqn (/1) into eqn (10) it follows
(AH*/R) (1/T'—=1/T)=(AH'/R) (1/T'-1/T)+Ina*

Multiplying by R/(1/T"—1/T)= — RT/AT, where AT =T — T>0, this equation
becomes

AH*=AH'— RT T' In (a'/AT) (12)
Eqn (/2) also holds in the limiting case, if x, —» 1. Then a\—> x!—> 1, a;— x;— 1, and
lim AH*=lim AH'— RT' lim (T Iln a"/AT) (13)
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Now we determine the limit values of all terms in eqn (/.3). From eyn (//) it
follows

dIna'=da'/a'=(AH*/RT?) dT
Rearranging,
AH*=(RT?/a") (da'/dT)=(RT"/a") |1/(dT/da")]
and finally,
lim AH" = R(T'y*/ k.~ (14)
X

where
kY =lim(dT/da')

Consequently k! is the slope of the tangent to the curve a,=f(T;) for x,— 1 in

SR}

a system with solid solutions on the basis of the substance **/
Let us consider the system B—C of the eutectic type, without any solid solutions
of component C in the component B. Then for the component B it holds (Fig. 2)

In (@hp)eg=(AHYR)-(1/T = 1/T) (15)

Applying the same procedure as above, we obtain from eqn (/5)

lim AH'= R(T")*/ k" (16)

xp—1

where

A B B c

Fig. 2. Comparison of the phase diagrams of the binary condensed systems A—B and B—C. The first of
them exhibits a limited solid solution on the basis of the component B ; in the second the solubility of the
component C in the solid component B equals zero.
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k“a,', =lim (dT/da,)
I

xg—

Consequently the term k°,; represents the slope of the tangent to the curve
a'=f(T,) for x,— 1 in a eutectic system, where no solid solytions are formed on the
basis of the substance *‘/”

We still have to determine the term

lim (T-In a*/AT).

x—1

Forx-1, T-» T a*—>1,Ina*—>0, AT=T'— T—0. We thus obtain an indefinite
expression. To find its value the L’Hospital rule should be used

lim (T-lna’/AT)=T" lim (In a*/AT) =

X1 x—1

=T lim(1/a") [da”/d(T' =) =T" lim(1/a") [da*/(-dT)]=

= —T"lim [1/(dT/da")]= - T" (1/k%), (17)

x—1

where
k!.=1lim(dT/da*)
Consequently k'. is the slope of the tangent to the curve a;=f(T;) for x, > 1 in
a system in which solid solutions exist on the basis of the substance “‘/”
By substitution from eqns (1/4), (16), and (17) into eqn (13) we obtain
R(T/ ki =R(T)/ki,+ R(T)/ k.

and dividing by R(T")?

1Vkyh=1/ky+1/k,. . (18)

Eqgn (/8) is the fundamental relation determining the course of the liquidus and
solidus curves of the type a4, =f(7;) near the point x, =1.

Analogically to eqns (/4) and (16) we formally may write

lim AH* = R(T")*/ k' (19)

x—1

Evidently AH* has the same physical dimensions as AH".

With respect to the definition of the AH terms it holds
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lim AH*=AH* (20a)
Xl
lim AH = AH' (20b)
X1
lim AH = AH* (20c)

X1

Upon insertion from eqns (14), (16), and (/9) into eqn (/&) and with respect to
eqns (20a)—(20c) we easily find

AH*=AH'"+ AH" 2r)
Inserting into eqn (1/), we get for the vicinity of the point x, =1
In (a').,=[(AH"+ AH")/R] (1/T*—=1/T) (22)
Comparison of eqns (9) and (/5) gives the well-known relation
(@)./(@") ey = (a0)eq

Eqn (21) can be obtained immediately from the modified eqn (9) if we write
formally

In (a%).,=(AH/R) (1/T"—=1/T)

However, the experiments provide the dependence not of the type T, =f(a,), but
T, =f(x,): Therefore we need to have the dependence a, =f(x,) in a suitable form at
our disposal. After a little modification we obtain from eqn (//)

T=AH*/(AS*—R Ina'), (23)
where
AS*=AH*/T
By differentiating eqn (23) with respect to x we find
dT/dx=R AH* (a')"' (da'/dx)/(AS*—R In a')?

and

limdT/dx=R AH* (AS*)* lim(da'/dx")=
x—1

=R(T)/AH* lin? (da'/dx') (24)

Let us take for the functional dependence a,=f(x,) the so-called universal
relationship (4], i.e.,
a=x! 25)
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For a not very great interval [T, T'] it holds with a sufficient accuracy that the
exponent in eqn (25), viz., k =const=k*; k* being the Stortenbeker correction
factor [4]. By differentiating eqn (25) with respect to x (we omit the index /")

da/dx = k% x**-"

and

lim (da/dx) = k% (26)

X
Therefore it holds
AH*=[R(T)/ka] k> (27)

(k' is related to the activity of the given substance in the liquid solution.)
Analogically we find that

AH'=[R(T")/ky,] k> (28)
and finally
AH =[R(T)/k] k5 (29)

(k> is related to the activity of the given substance in the solid solution.)
Generally,

kSl,l #: kSLs
By comparison of eqn (21) with eqns (27—29) we obtain

K5 k= k3 kG, + k3 kG (30)
and if &*'= k"
1 ky=1/kl + 1/k; (31)
It follows from eqn (30) that
1/ k= (k™) (kG — kD) kG, ko (32)
or rearranging,
R G WSS (33)
Always it holds that
ko< ki,

Substitution from eqn (32) into eqn (29) yields
AH = R(T')* k*' (kiyy— kI ko kD (34)
Apparently
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L . | 1 1 1 1 1 1 L 1 1 1 1 1 1 1 1 .
0.4 0.6 0.8 10 0.4 0.6 0.8 10 0.4 0.6 0.8 1.0
b
1 1 1 ] L 1 1 1 1 1 L 1 - | 1 1 1 1 1
0.4 06 0.8 10 0.4 0.6 0.8 10 0.4 0.6 0.8 1.0
d f

Fig. 3. Schematic comparison of the course of the curves of liquidus ( ) and solidus (—-—-—) of
the component B in a system with limited solid solutions on the basis of B, and the course of the liquidus
curve (— — — —) of the same B in simple eutectic system. The mole fractions characterizing the course
of these curves at a chosen temperature 7T, are given:
a) x'=0.40, x*=0.50; b) x'=0.48, x*=0.60; c)x'=0.56, x*=0.70; d)x'=0.64, x*=0.80;
e)x'=0.72,x*=0.90; f)x'=0.76, x**=0.95.
In all cases x}, = 0.80.

O<sAH

It follows from eqn (34) that for the determination of AH* we need not know the
value of £%*
Formally we may write

In (x)"=(AH*/R) (1/T'-1/T)
Therefrom after modification and using eqn (34)
Inxt=k%" (T) (k3 — kD) kS ki k9 (1/T'=1/T) (35)
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Rearranging eqn (28) we get
k'=AH' k3, /R(T")
Insertion of k%' from this relation into eqn (35) gives
Inx*=AH" (k},—k})/R k- k% (1/T"—1/T) (36)

The relation (36) may be used in calculating the course of solidus curve near the
melting point of pure substances in systems of the given type.

Fig. 3a—3f show some cases of the course of the curves x', x;, and x* provided
that £5'=k%*=1 and x,=0.8 at a chosen temperature 7.

Practical use of the deduced relations

From the data for the liquidus curve of systems in which we search for limited
solid solutions we determine the slope 4! and using eqn (/4) the value of the
quantity AH*. If the difference AH* — AH" is greater than the admissible error in
measurement (AH" being determined calorimetrically or cryometrically from the
course of the liquidus curve of the given substance in systems of the eutectic type in
which on the basis of the discussed substance no solid solutions are formed) then it
is a sufficient evidence of the presence of limited solid solutions in the system. If the
above-mentioned difference is equal to zero (exactly or within the limits of
experimental errors), the presence of solid solutions in the studied system cannot
be determined definitely in the described way. In this case the slope of the tangent
to the solidus curve for x— 1, viz., k% — o (Fig. 4). Then it follows from eqn (31)
that k£ equals k3, and hence AH*= AH". In such a case the existence of limited
solid solutions has to be proved by other methods.

Fig. 4. Phase diagram of a binary condensed
[ E system A—B. On the side of the component

A the criterion for the existence of limited solid
B solutions fails.

In deducing all the relations the formation of associates of the type e.g., A.—B,
where n> 1, has not been taken into consideration. Therefore the relations cannot

be generally used if the components form associated molecules or particles in the
solutions.
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