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The effect of extending the minimum contracted Gaussian basis by simple 
Gaussian functions localized on hydrogen bond (bond-functions) upon poten
tial curves of the H-bonded hydrogen in H20—OH" has been investigated. The 
potential curves have been calculated for the 0(1)—0(2) distances equal to 4.5 
and 4.75 a.u. As follows from the results, the extension of the basis by 
bond-functions is a simple way to obtain more realistic potential curves in 
comparison with those obtained by the use of the minimum basis. 

В работе было рассмотрено влияние расширения минимального сгруп
пированного гауссовского базиса с помощью простых гауссовых функций, 
помещенных на водородной связи (связевых функций), на кривые потен
циала Н-связывающего водорода в Н20—ОН". Были вычислены потен
циальные кривые для расстояний 0 ( 1 )—0 ( 2 ) 4,5 и 4,75 ат.ед. Из результа
тов вытекает, что расширение базиса на связевые функции является 
простым средством получения более реалистических потенциальных кри
вых по сравнению с расчетом в минимальном базисе. 

In the ab initio SCF MO LCAO calculations of many chemically interesting 
systems we are frequently obliged to use small or even minimum bases. When 
interpreting the results obtained by the use of minimum bases, we must be careful 
because there are known a few cases from the literature that the use of these bases 
led to incorrect results. One of the possibilities how to improve the reliability of the 
results obtained with small bases is the use of the so-called bond-functions, i.e. the 
functions localized on chemical bonds or on "lone pair" orbitals which are added to 
usual atom-centred functions [1—6]. The idea to use the functions localized outside 
the atoms was put forward by Preuss [7] and Whitten [8] and afterwards modified 
in different ways by other authors [9—11]. The addition of bond-functions to the 
usual nucleus-centred basis is a particular way of using the outside-nucleus 
functions. The aim of this procedure is to improve the description of electron 
density in the region of chemical bonds. These functions, in some respect, 

Chem. zvesti 31 (2) 165-170(1977) 165 



M. URBAN, S. PAVLÍK. T. KOŽÁR 

substitute for the polarization functions [1, 2, 5]. A systematic study of bond-func
tions in the Gaussian basis as well as the optimization of their exponents and 
localization was performed in the Theoretical Chemistry Laboratory at Vienna 
University [3, 4]. One of the most important results consists in the statement that 
the exponent and position of Gaussian bond-function are not to much dependent 
on a particular molecule but are rather characteristic of a given bond. The 
usefulness of bond-functions was tested by the calculations of various physical 
properties of molecules [2, 3, 12, 13]. The success in using them to the calculations 
of force constants [2, 3, 13] suggested the idea of using bond-functions for the 
calculations of the potential curves of the H-bpnded hydrogen. It is well known that 
the potential curves of the H-bonded hydrogen obtained by using small bases are 
usually non-realistic as compared with the results obtained with larger bases [14]. 
The main shortcoming consists in that the potential curve found with a small basis 
exhibits double-minimum at a larger distance between proton—donor and pro
ton—acceptor molecule than that obtained with a larger basis. If two minima 
appear on the curve, their distance and the height of the barrier between them are 
usually distorted. 

The problem how the addition of bond-functions to the minimum basis influ
ences the shape of the curve of H-bonded hydrogen will be solved in this study for 
the H 2 0—OH" system. 

Method 

The calculations were carried out by the SCF MO LCAO method [15] with Gaussian 
basis, namely {IsЪр) for oxygen [16] and (3s) for hydrogen [17] which was contracted to 
minimum basis [2s\pl\s]. The scaling parameters of exponents of the Gaussian functions 
for the 2s, px, Py, pz oxygen functions and the s hydrogen function (0.901, 0.983, 2.058) 
were optimized for a water molecule. By using this basis which represents the initial 
nuclei-centred basis, we obtained the optimum geometry of water with the bond length of 
1.814 a.u., bond angle of 109°, total energy of —75.80426 a.u., and dipóle moment of 
8.60 x 10~30 Cm [18]. The primitive Gaussian s function was added to this initial basis for 
both OH bonds of a water molecule in optimum geometry. The optimization of the exponent 
and position of this function for water molecule is the first suitable step in the determination 
of parameters of bond-function for the OH bond in the systems the component of which is 
a water molecule. 

Results and discussion 

In the calculations of proton potential curves of the H-bonded hydrogen for the 
system H 2 0—OH" we started to work with bond-functions the parameters of 
which had been used earlier for water dimer [19]. The position and exponent of 
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bond-functions were determined in this case from the condition that the dipóle 
moment of the water molecule obtained by their addition to the initial basis showed 
the value which was possibly the closest to that obtained experimentally. This 
method of optimization was chosen instead of the usual minimization of total 
energy because of the fact that the dipóle moment of water molecule in the initial 
atom-centred basis was considerably greater than that found experimentally 
(8.60 x 10" l oCm and 6.13 x 10"3OCm, respectively). That is one of the reasons 
why a too high dimerization energy of water molecule is obtained with this basis 
[18]. The optimum bond-function in the above-mentioned sense was a function 
with the centre on OH bonds in the distance of 0.604718 a.u. from oxygen (i.e. in 
1/3 of OH bond) and with exponent 2.0. By optimizing the geometry of H 2 0 with 
a basis extended by these functions we found the following data: bond length 1.786 
a.u., HOH angle 109°, total energy -75.82368 a.u., and dipóle moment 8.01 x 
Ю - 3 0 Cm. The bond-functions thus obtained, of course, are not optimum for H 3 O j . 
However, it may be supposed that they are satisfactory as a first estimate. 

The influence of the addition of bond-functions on the potential curves of the 
H-bonded hydrogen was appreciated by two ways 

— by comparing with the calculations carried out with equal initial basis but 
without bond-functions, 

— by comparing with the calculations carried out with a larger basis comprising 
polarization functions. For this comparison we used the results obtained by 
Kraemer and Diercksen [20]. We calculated the symmetric complex H 3 O j and the 
complex in which the H-bonded hydrogen was shifted by Ar from the symmetric 
position (Fig. 1). We have chosen equal geometry of H 3 0 2 as described in [20]. 
This geometry corresponds to the experimental geometry of water (length of О—H 
bonds 1.809 a.u. and HOH angle 104° 52'). We calculated the potential curves of 
H-bonded hydrogen H ( 2 ) for the 0 ( 1 ) — 0 ( 2 ) distances equal to 4.75 and 4.5 a.u. The 
smaller of these distances approaches that distance in which the potential with two 
minima is still to be found in the SCF approximation [21]. The positions of 
bond-functions /,—/4 localized on all OH bonds, including hydrogen bond are 
marked in Fig. 1. Preliminary calculations have shown that the functions /3 and /4 

have nearly no influence on the potential curves of the H-bonded hydrogen. 
Therefore, other calculations with bond-functions have been performed merely 
with the functions fx and / 2 . The results for the distance 0 ( 1 ) — 0 ( 2 ) equal to 4.75 a.u. 

Fig. I. Geometry of the H20—OH complex. 
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are presented in Fig. 2. It is obvious that two minima appeared on the curve after 
adding bond-functions to the fundamental basis. However, the height of the barrier 
(0.00035 a.u.) is considerably different from the height of the barrier with large 
basis (0.00424 a.u.) [20] as well as the distance of both minima (0.41 or 0.75 a.u.). 
These parameters could be improved by optimizing bond-functions directly for the 
H3O2 system. 

For the 0 ( 1 )—0 (2) internuclear distance of 4.5 a.u., two minima did not appear on 
the curve of the H-bonded hydrogen even if the basis was extended by bond-func
tions which optimized the dipóle moment of water. Only the curve exhibited 
considerable flattening (Fig. 3). Therefore, we optimized the position and exponent 
of bond-functions directly for the H3O2 system at this distance. In the optimization, 
we did not use, in this case either, the minimum of the total H3O2 energy as 
a criterion. Our aim was to find such functions which could give a double-minimum 
potential for the 0 ( 1 ) — 0 ( 2 ) distance of 4.5 a.u. In order to save the computer time, 
we did not calculate the whole potential curves of H-bonded hydrogen, but we 
compared the energies of H3O2" at the position of H ( 2 ) in the middle of the 
O n ) — O ŕ 2 ) bond (Ar = 0) and at the deflection of H ( 2 ) by 0.147 a.u. from the centre 
of this bond (on the curves in Fig. 3, it is the calculated point which is situated 
nearest to the centre of the 0 0 ) — 0 ( 2 ) bond). The results are presented in Table 1. 
The function localized at the distance of 0.704 a.u. from oxygen with the exponent 

• 0.5 Jr/a.u. 

Fig. 2. Proton potential curves in H 3 0 2 for the 
On )—0(2 ) distance equal to 4.75 a.u. 

a) Minimum basis; b) basis with bond-functions 
f\ y f2 optimized for H 2 0 ; c) basis 

[5s4p ld/3s lp] ;Ref . [20] . 

-0.25 0.25 Jr/a.u. 

Fig. 3. Proton potential curves in H 3 O j for the 
O c l ) — 0 ( 2 ) distance equal to 4.5 a.u. 

a) Minimum basis; b) basis with bond-functions 
/1, /2 optimized for H 2 0 ; 

c) basis [55 4p ld/3s \p]; Ref. [20]; 
d) basis with bond-functions /,, / 2 optimized 

f o r H 3 0 2 . 
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Table 1 

Optimization of the position and exponent of bond-functions for H 20—OH" 

d(0-f) 
a.u.

ac 

0.604718 

0.654718 

0.704718 

0.804718 

0.704718 

0.704718 

0.704718 

0.704718 

Exponent 

2.0 

2.0 

2.0 

2.0 

" 1.8 

1.6 

1.4 

1.2 

Аг/а.и.а 

0.000 

Escř/a.u. 

-150.93508 
-150.93237 
-150.93070 
-150.92986 
-150.93064 
-150.93066 
-150.93101 
-150.93230 

0.147 

b 

-150.93430 
-150.93167 
-150.93005 
-150.92919 
-150.93008 
-150.93017 
-150.93057 
-150.93182 

ÄEscF/a.u.fe 

0.00078 
0.00070 
0.00065 
0.00067 
0.00056 
0.00049 
0.00044 
0.00048 

a) 1 a.u.=0.529172xl0-10m. 
b) 1 a.u.=2625.29kJmor1. 
c) d(0—f) is the distance of bond-functions /i, f2 from oxygen O m and 0 ( 2 ), respectively. 

1.4 is optimum function. We did not find a double-minimum potential function in 
this case either, but the curve flattened again. Finally, let us mention that by using 
the standard minimization of the total energy of H 2 0, we obtained the optimum 
bond-functions at the distance of 0.9 a.u. from oxygen and with the exponent 1.2. 

Furthermore, we had to verify whether the double-minimum potential could be 
obtained with the px, py, pz functions localized on H(2) hydrogen [22]. By 
comparing the energies for Ar = 0.0 and Ar = 0.147 a.u., we revealed that these 
three functions were less effective in the correction of the potential curve than two 
bond-functions. We did not find any double-minimum potential, the curve was less 
flattened and the calculations necessitated more computer time. 

Our results may be summarized in the following items: 
— The addition of primitive s bond-functions to the minimum contracted 

Gaussian basis is a simple way to obtain more realistic potential curves of the 
H-bonded hydrogen. Using a basis extended by these functions, we obtained 
potential curves which differed from the curves obtained with a large basis less than 
the curves obtained with the initial basis. Naturally, a quantitative agreement with 
the results obtained with a large basis is not, in general, to be expected in whatever 
way we improve the minimum basis. In the calculations with larger bases, it is also 
important to take into consideration the influence of correlation energy on the 
potential curves of the H-bonded hydrogen. The correlation energy reduces, the 
barrier between both minima [23]. It may be that the errors due to the use of 
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smaller basis and the neglection of correlation effects, to a certain extent, 
compensate each other. 

— The potential curve of the H-bonded hydrogen in H 3 0^ is not too much 
susceptible to the position and exponent of bond-function (Table 1). The optimiza
tion with respect to the total energy of H 2 0 is the first good step to obtain the 
parameters of bond-functions for the H 2 0—OH" system. 

— The bond-functions are more effective in the correction of proton potential 
curves than the px, py, pz functions localized on the H-bonded hydrogen. 
Moreover, the computer time is shorter for bond-functions. 

The calculations for other systems as well as the calculations in which 
bond-functions would be added to a larger basis (e.g. double zeta) would be useful 
for definitive conclusions. 
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