Benzothiazole compounds. XVII. 2-Alkyl- and 2-aralkylsulfonylbenzothiazoles and their antimicrobial activity

"V. SUTORIS, "P. FOLTÍNOVÁ, and "A. GÁPLOVSKÝ

*Department of Organic Chemistry, Faculty of Natural Sciences, Komenský University, 816 31 Bratislava

b Institute of Experimental Biology, Faculty of Natural Sciences, Komenský University, 886 04 Bratislava

> ^cInstitute of Chemistry, Komenský University, 816 31 Bratislava

> > Received 2 May 1979

Accepted for publication 25 October 1979

By oxidation of 2-alkylthio-, 6-nitro-2-alkylthio-, and 2-aralkylthiobenzo-thiazoles the appropriate sulfones were prepared which showed good antibacterial, antifungal, and antimycobacterial activities. With some derivatives good activity was found also on *Mycobacterium fortuitum*. A correlation between the biological activity of the prepared compounds and their partition coefficients was proved in the system of octane—methanol.

Окислением 2-алкилтио-, 6-нитро-2-алкилтио- и 2-аралкилтиобензтиазолов были приготовлены соответствующие сульфоны и у них были отмечены хорошее антибактериальное, антифунгицидное а антимикобактериальное действия. Для некоторых производных было обнаружено также и воздействие на *Mycobacterium fortuitum*. Было доказано, что существует корреляция между биологической активностью приготовленных соединений и коэффициентами распределения в системе октан-метиловый спирт.

The results of the previous works [1—4] pointed at some relations between the structure and antimicrobial activity of the benzothiazole derivatives. The need to prepare some 2-alkyl-, 6-nitro-2-alkyl-, and 2-aralkylsulfonylbenzothiazoles was shown in further studies as the sulfone group in comparison with the sulfide group often increased the biological activity in several directions. Some comments marginally concerning the problem studied can be found in [5—12]. None of these works has paid attention to preparation of sulfones based on benzothiazole from the standpoint of antimicrobial activity. *Popoff* and coworkers [13] prepared a bactericidally and fungicidally active preparation containing an inert carrier and

404 Chem. zvesti 34 (3) 404-412 (1980)

an active compound 2-alkyl-5(6)-X-sulfonylbenzothiazole, where alkyl= C_1 — C_{12} nonbranched saturated chain or cycloalkyl, and X=halogen, NO₂, NH₂, NHR, NR₂, alkyl. Agui and coworkers [14] synthesized different 6-substituted 2-methyl-sulfonylbenzothiazoles which were found to show bactericidal and inhibitory activity.

In this work 2-alkyl-, 6-nitro-2-alkyl-, and 2-aralkylsulfonylbenzothiazoles (Table 1) have been synthesized. These compounds have not been prepared and tested for antimicrobial activity as yet except the compounds I, II, IV—VI [13] which were tested for comparison with the other derivatives.

The starting 2-alkylthiobenzothiazoles were prepared by treatment of potassium salt of 2-mercaptobenzothiazole or 2-mercapto-6-nitrobenzothiazole with halogen derivatives [15, 3]. Oxidation to sulfones was carried out with 28% H₂O₂ in 99% acetic acid or with aqueous saturated solution of KMnO4 in water-acetone medium. Under the conditions presented in Experimental the oxidation of all 6-nitro-2-alkylthiobenzothiazoles and 2-aralkylthiobenzothiazoles with H₂O₂ proceeded well but the oxidation of 2-alkylthiobenzothiazoles proceeded under decomposition or gave very low yields. Therefore, they were oxidized with KMnO₄. 2-alkylsulfonylbenzothiazoles, 6-nitro-2-alkylsulfonylbenzo-The thiazoles, and 2-aralkylsulfonylbenzothiazoles were tested for antibacterial, antifungal, and antiprotozoal activities. It was found (Tables 2-4) that this group of compounds was antimicrobially active. The antibacterial, antifungal, antitrichomonal, and antitrypanosomal activities were proved to be good. A positive effect of NO₂ in the position 6 of the prepared compounds on antimicrobial activity was observed. For example, the activity of the compounds I and II on Staphylococcus aureus: ED₁₀₀ for $I = 98.0 \,\mu\text{g/ml} = 45 \times 10^{-5} \,\text{mol/l}$ and for $II = 6.5 \,\mu\text{g/ml} =$ 25×10^{-6} mol/l, ED₅₀ for $I = 30.0 \,\mu\text{g/ml} = 14 \times 10^{-5}$ mol/l and for $II = 4.2 \,\mu\text{g/ml} =$ 16×10^{-6} mol/l. The ED₁₀₀ and ED₅₀ values found with the other bacterial strains pointed to good antibacterial activity. The presence of the NO₂ group in the position 6 caused an increase in antimycobacterial and also in antifungal activity. The activity against Mycobacterium fortuitum, which is known to be very resistant against antibacterial preparations, can be positively estimated. The activity on Tritrichomonas foetus was interesting mainly with the 6-nitro derivatives when compared Metronidazol (1-(2-hydroxywith that of the standard ethyl)-2-methyl-5-nitroimidazole) which is active on Tritrichomonas foetus at 2-5 μg/ml concentration. With this group of compounds the activity on epimastigotal forms of Trypanosoma cruzi can be highly evaluated. With some compounds we have found 100% lethal activity already at 0.8 µg/ml concentration at in vitro conditions.

We attempted to express quantitatively the relationship between the structures of the prepared sulfones and their biological activity on the basis of partition coefficients [16]. The values of the partition coefficients varied in the range of

Chem. zvesti 34 (3) 404–412 (1980) 405

V. SUTORIS, P. FOLTÍNOVÁ, A. GÁPLOVSKÝ

 $\label{thm:continuous} Table~1$ Characterization of the synthesized 2-alkyl- and 2-aralkylsulfonylbenzothiazoles

Compound	l R	\mathbb{R}^1	Formula	М		Calculate	ed/found		Yield	M.p., °C
					% C	% Н	% N	% S	%	Solvent
I	CH ₃	Н	$C_8H_7O_2NS_2$	213.3					48	90—92
										Ethanol
II	CH ₃	NO ₂	$C_8H_6O_4N_2S_2$	258.3					59	192—193
										Tetrahydrofuran-ethanol (1:1)
III	CH ₂ Cl	H	$C_8H_6CIO_2NS_2$	247.7	38.74	2.43	5.64	26.25	26	125—127
					38.60	2.48	5.88	26.36		Ethanol
IV	C₂H₅	NO ₂	$C_9H_8O_4N_2S_2$	272.3					62	161—162
										Ethanol
V	C_3H_7	NO ₂	$C_{10}H_{10}O_4N_2S_2$	286.3					59	182—184
										Ethanol
VI	$i-C_3H_7$	H	$C_{10}H_{11}O_2NS_2$	241.3					31	84—86
										Ethanol
VII	i-C₃H ₇	NO_2	$C_{10}H_{10}O_4N_2S_2$	286.3	41.99	3.52	9.79	22.41	56	155—156
					42.12	3.41	9.74	22.68		Ethanol
VIII	CH ₂ C≡CH	Н	$C_{10}H_8O_2NS_2$	238.3	50.46	3.38	5.88	26.94	34	114—116
					50.24	3.24	6.08	27.10		Ethanol
IX	CH ₂ CH(OH)CH ₂ Cl	H	$C_{10}H_{10}CIO_3NS_2$	291.8	41.13	3.41	4.81	22.03	42	145—146
					41.07	3.30	4.79	22.08		Ethanol
X	$CH_2CH=CH_2$	NO_2	$C_{10}H_8O_4N_2S_2$	284.3	42.24	2.83	9.85	22.55	46	190—192
					42.41	2.96	9.77	22.59		Tetrahydrofuran-ethanol (1:3)
XI	CH ₂ CH(CH ₃) ₂	NO_2	$C_{11}H_{12}O_4N_2S_2$	300.3	44.03	4.03	9.33	21.37	58	125—126
					43.87	3.90	9.28	21.70		Ethanol

Table 1 (Continued)

Э° ,.q.М	Yield		punoJ/pa	Calculat		y	ola.o.d	ıa	ū	F=52225)
Solvent	%	S %	N %	Н %	Э %	W	Formula	'A	К	Compound
S.26—26	19	10.81	98.7	99.2	09.08	7.958	C'H"O'N'Z	ON	CH ³ CH(C ³ H ³)(CH ³) ³ CH ³	IIX
Ethanol	10	91.81	78.T	02.2	50.02	1.000	707×10007×1510	7011	5x105(7x10)(5x170)x107x10	****
122—123	91	97.91	4.32	11.5	98.12	3.525	C ¹⁴ H ¹⁰ ClO ⁵ N2 ⁵	Н	CH ³ C ⁹ H ⁴ CI-b	IIIX
Tetrahydrofuran-ethanol (1:3)		19.54	4.22	30.5	59.12		7070.00 (11		d . a ta . 0 = 7	
951+51	EL	98.71	68.£	2.50	01.74	3.925	C ¹⁴ H ² Cl ⁵ O ⁵ N2 ⁵	H	$CH^{z}C^{o}H^{2}(CI)^{z}-m^{o}b$	ΛIX
Tetrahydrofuran-ethanol (1:3)	-	17.72	10.4	14.2	81.74		774		J	
210—212	0L	16.84	20.11	75.2	05.44	€.08€	C ¹⁴ H ³ O ⁹ N ³ Z ⁵	Н	$CH^{3}C^{0}H^{3}(NO^{3})^{3}-O^{0}D$	ΛX
Tetrahydrofuran-ethanol (1:2)	763 W	06.91	£1.11	15.5	86.44	200 Martin (1920 M.C.)	7 6 0 2 11		Iv 7/7 \c 0 7	
811—911	85	16.81	4.12	38.5	97.£9	E. QEE	C ¹⁸ H ¹³ O ⁵ N2 ⁵	H	CH^{z} - b -Naphthalene	$I\Lambda X$
Ionsdta		91.91	81.4	86.5	£2.£9				T	
199—201	25	31.28	£8.8	2.45	49.54	2.014	C12H10O4N2S4	H	CH ₂ SO ₂ -2-Benzothiazole	$II\Lambda X$
lonsht3		74.15	96.9	25.5	44.12				_	
6LI—8LI	LS	23.93	84.8	3.00	18.44	6.104	C13H12CIO4NS3	Н	$(CH_2)_2 SO_2 C_6 H_4 CI-p$	$III\Lambda X$
Tetrahydrofuran-ethanol (1:3)		23.79	19.5	78.2	69.44		go so topogo escente		■	
141—145	65	14.61	T4.8	3.05	86.65	2.088	$C^{11}H^{10}O^9N^5Z^5$	NO	CH ³ COOC ³ H ³	XIX
Ethanol-acetone (2:1)		19.59	29.8	3.05	40.18					
86—L6	32	22.28	4.86	3.50	16.24	T.782	$C^{11}H^{10}CIO^{\dagger}N2^{5}$	H	CH ³ COOCH ³ CH ³ CI	XX
Ethanol		22.14	4.80	3.54	\$8.24					
001—86	EL	92.71	L9. L	2.48	91.98	8.498	$C^{11}H^{9}CIO^{9}N^{5}Z^{5}$	^z ON	CH ³ COOCH ³ CH ³ CI	IXX
Ethanol		17.70	98.7	2.45	80.98				Second Se	
801—701	89	18.74	81.8	78.2	42.14	342.3	$C^{15}H^{10}O^9N^5Z^5$	^z ON	CH ³ COOCH ³ CH=CH ³	IIXX
Ethanol		16.81	0£.8	3.06	42.28					
86—96	9 <i>L</i>	16.71	28.7	₹6.€	19.61	4.828	$C^{13}H^{14}O^9N^5Z^5$	^z ON	CH3COOCH(CH3)C2H3	IIIXX
Ethanol		18.04	86.7	18.5	64.64					
LZI—SZI	IL	87.91	2£.7	2.63	10.44	382.3	$C^{17}H^{10}O^{1}N^{5}Z^{5}$	^z ON	CH ⁵ COOCH ⁵ -Entgu	ΛIXX
Ethanol		18.91	ZE.T	2.70	43.89					

V. SUTORIS, P. FOLTÍNOVÁ, A. GÁPLOVSKÝ

Table 2

Antibacterial activity of 2-alkyl- and 2-aralkylsulfonylbenzothiazoles

		Staphylocod	ccus aureus	S		Bacillus	subtilis			Escheric	hia coli	
Compound	EI	D ₁₀₀	Е	D ₅₀	EI	D ₁₀₀	Е	D ₅₀	EI) ₁₀₀	Е	D ₅₀
	а	b .	а	b	а	b	а	b	а	b	а	b
I	98	45 -5	30.0	15 -5	90.0	42 -5	30.0	14 -5	91.0	42 -5	32.0	15 -5
II	6.5	25 - 6	4.2	16 - 6	6.0	23 - 6	4.0	15 - 6	5.0	19 - 6	3.0	11 - 6
III	120.0	48 - 5	39.0	15 - 5	110.0	44 - 5	38.0	15 - 5	110.0	44 - 5	39.0	15 - 5
IV	12.5	45 - 6	6.0	22 - 6	12.0	44 - 6	5.8	21 - 6	10.5	38 - 6	4.5	16 - 6
\boldsymbol{V}	13.0	45 - 6	6.2	21 - 6	13.0	45 - 6	6.2	21 - 6	13.0	45 - 6	6.2	21 - 6
VI	200.0	82 - 5	52.0	21 - 5	200.0	82 - 5	51.0	21 - 5	200.0	82 - 5	54.0	22 - 5
VII	13.0	45 - 6	6.2	21 - 6	13.0	45 - 6	6.2	21 - 6	13.0	45 - 6	6.2	21 - 6
VIII	82.0	34 - 5	26.0	10 - 5	85.0	35 - 5	25.0	10 - 5	95.0	39 - 5	28.0	11 - 5
IX	200.0	68 - 5	90.0	30 - 5	200.0	68 - 5	91.0	31 - 5	200.0	68 - 5	94.0	32 - 5
X	6.2	27 - 6	3.8	16 - 6	6.2	27 - 6	3.8	16 - 6	5.4	23 - 6	3.0	13 - 6
XI	15.0	49 - 6	6.5	21 - 6	13.0	43 - 6	6.5	21 - 6	14.5	48 - 6	6.5	21 - 6
XII	55.0	15 - 5	38.0	10 - 5	55.0	15 - 5	30.0	8 - 5	60.0	16 - 5	31.0	8 - 5
XIII	200.0	61 - 5	55.0	16 - 5	200.0	61 - 5	50.0	15 - 5	160.0	49 - 5	46.0	14 - 5
XIV	220.0	61 - 5	56.0	15 - 5	200.0	55 - 5	49.0	13 - 5	180.0	50 - 5	46.0	12 - 5
XV	220.0	57 - 5	54.0	14 - 5	200.0	52 - 5	51.0	13 - 5	175.0	46 - 5	45.0	11 - 5
XIX	25.0	75 - 6	7.2	21 - 6	25.2	77 - 6	7.4	22 - 6				
XXI	24.0	65 - 6	6.8	17 - 6	24.0	65 - 6	6.5	17 - 6	22.0	60 - 6	7.0	19 - 6
XXII	24.0	70 - 6	6.5	18 - 6	24.0	70 - 6	6.5	18 - 6	22.0	64 - 6	7.0	20 - 6
XXIII	90.0	25 - 5	24.0	66 - 6	90.0	25 - 5	28.0	64 - 6	83.0	23 - 5	22.0	61 - 6
XXIV	25.0	65 - 6	7.0	18 - 6	25.0	65 - 6	7.0	18 - 6	24.0	62 - 6	7.0	18 - 6
XXV	120.0	55 -5	35.0	16 -5	110.0	51 -5	30.0	13 -5	110.0	51 -5	30.0	13 -5

 $a = \mu g/ml$.

Chem. zvesii 34 (3) 404-412 (1980)

 $b = \text{mol} \times 10^{-n}/\text{I}$; the negative number means the value of the exponent -n.

0.15—0.30. This problem was worked up mathematically by correlation analysis where $\log (1/\text{ED}_{50})$ was expressed as a function of P and P^2 (P = partition coefficient) at tests on Staphylococcus aureus, Bacillus subtilis, and Escherichia coli. The derivatives of the series 1 (the compounds I, III, VIII, IX, XIII—XV) showed good correlations for Staphylococcus aureus. This relationship can be expressed by the equation: $\log 1/\text{ED}_{50} = 3.76 + 1.39P - 4.88P^2$. The derivatives of the series 2 (the compounds IV, V, VII, X, XI, XII, XXI, XXIV) showed statistical relationships for all strains of bacteria examined except the compounds VIII and IX which, regarding their structures, could have acted in the given

Table 3

Antifungal activity of 2-alkyl- and 2-aralkylsulfonylbenzothiazoles

	Nature of growth											
Compound		тоѕроі урѕеш			chophy rubrun		•	ermop occosu	-		Candid dotrop	
	50	5	0.5	50	5	0.5	50	5	0.5	50	5	0.5
I	Α	В	C	Α	В	C	Α	В	C	Α	В	C
II	Α	Α	В	Α	Α	В	Α	Α	В	Α	Α	В
III	Α	В	C	A	В	C	Α	В	C	Α	C	C
IV	Α	В	C	Α	Α	С	Α	Α	С	Α	Α	В
\boldsymbol{v}	Α	В	C	Α	В	C	Α	В	C	Α	Α	В
VI	В	C	C	Α	С	C	Α	С	C	В	C	C
VII	Α	В	C	Α	В	C	A	В	C	Α	В	C
VIII	A	C	C	A	C	C	A	C	C	A	C	C
IX	C	C	C	C	C	C	C	C	C	C	C	C
X	Α	В	C	Α	В	C	A	A	В	A	A	В
XI	A	В	C	Α	Α	C	Α	В	C	A	В	C
XII	В	C	C	A	C	C	Α	C	C	В	C	C
XIII	В	C	C	Α	C	C	A	C	C	В	C	C
XIV	В	C	C	A	C	C	В	C	C	В	C	C
XV	В	C	C	A	В	C	В	C	C	В	C	C
XVI	C	C	C	C	C	C	C	C	C	C	C	C
XVII XVIII	B C	C C	C C	C C	C C	C C	B C	C C	C	C C	C	C
XIX	A	C	C		В	C	F62	В	C		C C	C
XX		C	C	A	C	C	A		C	A		C
XXI	A A	В	C	A	В	C	A	C B	C C	A	C	C C
XXII	A	В	C	A	В	C	A	В		A	В	
XXIII	A	C	C	A A	C	C	A A	C	C C	A A	В	C C
XXIV	A	C	C	A	C	C	A	C	C	A	C C	C
	A	C	C	A	C	C	A	C	C	A	C	C

A = 100% inhibition; B = 50% inhibition; C = without inhibition.

Chem. zvesti 34 (3) 404-412 (1980)

Table 4

Antimycobacterial and antiprotozoal activity of 2-alkyl- and 2-aralkylsulfonylbenzothiazoles ($\mu g/ml$)

Company		/bacteriostatical entration	Lethal concentration				
Compound	BCG	Mycobacterium fortuitum	Trypanosoma cruzi	Tritrichomonas foetus			
I	50/12.5	200/50	50.0	12.5			
II	3.1/3.1	12.5/3.1	0.8	0.8			
III	50/12.5	200/50	50.0	12.5			
IV	12.5/3.1	50/12.5	0.8	3.1			
V	12.5/3.1	50/12.5	0.8	3.1			
VI	200/50	400/200	200.0	50.0			
VII	12.5/3.1	50/12.5	0.8	3.1			
VIII	200/50	400/200	50.0	50.0			
IX	200/50	400/200	200.0	200.0			
X	3.1/3.1	12.5/3.1	0.8	0.8			
XI	12.5/3.1	50/12.5	3.1	3.1			
XII	50/12.5	200/50	3.1	12.5			
XIII	200/50	400/200	200.0	200.0			
XIV	200/50	400/200	200.0	200.0			
XV	200/50	400/200	200.0	200.0			
XIX	12.5/3.1	200/50	3.1				
XXI	12.5/3.1		3.1	12.5			
XXII	50/12.5	200/50	3.1	12.5			
XXIII	50/12.5	200/50	12.5	12.5			
XXIV	12.5/3.1	200/50	3.1	12.5			

process by different mechanism. This group of compounds can be described by the following equations: for Staphylococcus aureus $\log 1/\mathrm{ED_{50}} = -8.67 + 135.19P - 338.16P^2$, for Bacillus subtilis $\log 1/\mathrm{ED_{50}} = -24.25 + 292.56P - 732.00P^2$, and for Escherichia coli $\log 1/\mathrm{ED_{50}} = -26.32 + 312.38P - 779.87P^2$. The correlation coefficients varied in all cases in the range of 0.9—0.95, the errors in individual cases were lower than 12%. The analytical expression of individual functions can be utilized in investigation of antimicrobial activity for the known values of partition coefficients in the system of octane–methanol. However, it is to be considered that the results can be partly influenced by lesser number of the experimental points available for the analysis.

Experimental

The melting points were determined on a Kofler block. Solvents for crystallization and analytical data of the synthesized compounds are presented in Table 1. The activity on

Staphylococcus aureus, Bacillus subtilis, and Escherichia coli was followed in liquid cultivation media. The activity was evaluated by a spectrophotometric method on a SPEKOL-ZV spectrophotometer at 37° C and 460 nm by following the growth of the individual strains under the action of different concentrations of the compounds investigated. The found values of optical density served to construct the curves from which the ED₁₀₀ and ED₅₀ values were graphically evaluated. These values represent the degree of antibacterial activity; the results are presented in Table 2.

The antifungal activity against Microsporum gypseum, Trichophyton rubrum, Epidermophyton floccosum, and Candida pseudotropicalis was followed by the dilution test tube method in Sabouraud agar. The compounds after dissolution in DMSO were added into the tempered agar so that the resulting concentrations were 500, 50, 5, and 0.5 μ g/ml. The results are presented in Table 3. All sulfones tested acted fungicidally at 500 μ g/ml and therefore, this concentration is not presented in Table 3.

The activity on mycobacterial strains was followed by the dilution method in a serum liquid Šula medium. The activity on *Mycobacterium fortuitum* was evaluated after 7 days cultivation at 37°C and on *BCG* after 21 days cultivation. The results are presented in Table 4.

The activity on *Tritrichomonas foetus* was followed in a liquid Diamond medium and was evaluated after 36 h cultivation at 37°C. The number of individuals in the control was compared with that in the test tubes containing the individual compounds at different concentrations. The activity on *Trypanosoma cruzi* strain Z was followed in a liquid LIT medium. In time intervals the number of motile individuals was followed and simultaneously, by inoculation into fresh LIT medium, the degree of trypanocidal activity was observed. More detailed procedures of tests can be found in [17, 18]. Partition coefficients were studied by shaking 10^{-3} M solutions with octane—methanol (1:1). The concentrations of compounds in the individual phases were determined spectrophotometrically on a Perkin—Elmer 450 apparatus at 23°C and 360—280 nm.

2-R-Sulfonylbenzothiazoles (I, III, VI, VIII, IX, XX)

To 2-R-thiobenzothiazole (0.03 mol) dissolved in acetone (100 ml), water (20 ml), and acetic acid (10 ml), a saturated aqueous solution of potassium permanganate (4.74 g; 0.03 mol) was added portionwise under stirring. The reaction mixture was heated at 50—55°C for 4 h. Manganese dioxide was filtered off on heating and washed with acetone. After cooling the solid product was filtered off and purified by crystallization.

6-R¹-2-R-Sulfonylbenzothiazoles (II, IV, V, VII, X—XIX, XXI—XXIV)

 $6\text{-R}^1\text{-}2\text{-R}$ -Thiobenzothiazole (0.03 mol) was dissolved in 98—99% acetic acid (150 ml). 28% Hydrogen peroxide (21.7 g; 0.18 mol) was added at 40—45°C under continuous stirring for 30 min. The reaction mixture heated to 55—65°C was stirred for further 3—4 h. After cooling it was poured onto crushed ice (400—600 g). The solid portion was filtered and purified by crystallization.

Chem. zvesti 34 (3) 404-412 (1980)

References

- 1. Sutoris, V., Blöckinger, G., Foltínová, P., and Perjéssy, A., Chem. Zvesti 27, 703 (1973).
- 2. Sutoris, V., Orosová, L., and Foltínová, P., Chem. Zvesti 30, 179 (1976).
- 3. Sutoris, V., Foltínová, P., and Blöckinger, G., Chem. Zvesti 31, 92 (1977).
- 4. Foltínová, P., Sutoris, V., Blöckinger, G., and Ebringer, L., Acta Fac. Rerum Natur. Univ. Comenianae (Microbiologia) 4, 97 (1976).
- 5. Kucherov, V. F., Zh. Obshch. Khim. 19, 752 (1949).
- 6. Hofmann, A., Ber. 12, 1126 (1879).
- 7. Hofmann, A., Ber. 13, 11 (1880).
- 8. Bedniagina, N. P. and Postovskii, I. Yu., Zh. Obshch. Khim. 30, 3193 (1960).
- 9. Kuznetsova, E. A., Zhuravlev, S. V., and Stepanova, T. N., Zh. Org. Khim. 1, 767 (1965).
- Kuznetsova, E. A., Svetlaeva, V. M., Zhuravlev, S. V., Ninokurov, V. G., and Trotskaya, V. S., Zh. Org. Khim. 32, 3007 (1962).
- 11. Svetlaeva, V. M., Kuznetsova, E. A., and Zhuravlev, S. V., Zh. Org. Khim. 34, 983 (1964).
- 12. Sasaki, K. and Xajakova, S., Japan 25386 (1972); Ref. Zh. Khim. 2N 561P.
- Popoff, J., Buchholz, B., and Miller, J. H., US 3519630 (1970); Chem. Abstr. 73, 76146 (1970);
 Chem. Abstr. 83, 73468 (1975).
- Agui, H., Mitani, T., Nakashita, M., Murayama, E., Okamura, K., Nakagome, T., Komatsu, T.,
 Izawa, A., and Eda, Y., Ger. Offen. 2449544 (1975); Chem. Abstr. 83, 79231 (1975).
- Mikulášek, S., Sutoris, V., Foltínová, P., Konečný, V., and Blöckinger, G., Chem. Zvesti 28, 686 (1974).
- 16. Hansch, G. and Fujita, T., J. Amer. Chem. Soc. 86, 1616 (1964).
- 17. Foltínová, P., Sutoris, V., Blöckinger, G., and Ebringer, L., Folia Microbiol. 23, 225 (1978).
- 18. Foltínová, P., Ebringer, L., Jurášek, A., and Rybár, A., Acta Fac. Rerum Natur. Univ. Comenianae (Microbiologia) 6, 35 (1978).

Translated by A. Kardošová