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The effect of short-range repulsion forces on shape of A, vibration bands of
planar XY, molecules in liquid phase is described. The repulsion forces are
described by the Born—Mayer potential. Application of the perturbation
theory and stochastic models of reorientation and translation of molecules
gives results which for a simple model of radial distribution function agree
semiquantitatively with experiment.

B pa6oTte onuchBaeTCH BIUSHHUE OTTANKUBAIOLMX CHIT GIIMXKHETO MOPSAIKA
Ha opMy Kosie6aTeNbHbIX NOJOC A, NIOCKHX Mosiekyn Tuna XY, B KMIKOC-
Tax. OTTankuBaloUy¥e CHIbl OMUCBIBAIOTCA NMOTEHUHanoM BopHa—Maiiapa.
ITpy nomolu TEOpHH BO3MYLIEHMS M CTOXAaCTHYECKUX MOAEJEH MepeopHeH-
THPOBKHM MOJIEKYJl M MOCTYNMATENbHOTO JBHXCHHS ObLIM MONYYEHbl pe3ylib-
TaThbl, KOTOPbIE HAXOAATCS B MOJIYKOJIUYECTBEHHOM COTJIACHH MIPOCTOMH MOJENH
paauanbHOM YHKIMH COCTOSIHHH C 3KCIIEPHMEHTOM.

The effect of short-range repulsion forces on the bandwidths of vibrational
spectra of liquids was first explained by Valiev [1]. His theory was later modified
and applied to spherical top molecules [2]. Recently, several papers [2—7]
appeared, where vibrational bandwidths were studied. This paper is an extension of
theory to planar XY, molecules with D;, symmetry. Since the theory of the effect
of repulsion forces on bandwidths was already described elsewhere [2], we shall
only briefly review the basic ideas.

Theory
It follows from the perturbation theory that the probability p of transition

v — v — 1, where v, is vibrational quantum number of k-th vibration, is given by
the following expression

p(i—>ve—1)=h"2 fj H'*(0)H'(t) exp (— 2micw,t) dt (1)
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where H' = (vi|H|vi— 1), w, is the wavenumber in cm™'. The studied liquid is
formed by only one type of molecule and repulsion between the i-th atom of
studied molecule and j-th atom of molecule u is given by the Born—Mayer
potential

H(R: )= V;exp(— a;Ri ) (2)
R.,.=R,+ Aiu —A; (3)

R, is a vector connecting centres of mass of the studied molecule and molecule y,
vectors A,,, A; determine the positions of atom j in molecule 4 and atom i in the
studied molecule. It follows then

H' = (hw)"*(4mcw )™ E a; Vi exp(— a;Ri ) (N:juCix) (4)

i

where N, =R, ./Ri .
Vectors C; are defined by the following transformation

S = Ek: C..O« (5)

Q. is the k-th normal coordinate and S; is the displacement of atom i in this
vibration (for vectors we shall use small letters if they are expressed in molecule-
-fixed system of coordinates and capital letters if they are expressed in laboratory
system of coordinates). Averaging in eqn (1) is carried out in the following way

H'™*(0)H'(t)= [ H'*(0)H'(t) W(40,0;9,1) dqodgq (6)

where W(q0,0;9,t) dqodq is the probability that at time =0 the values of
variables are within the interval (go,q0+ dg,) while at time ¢ they are within the
interval (q,q +dq). It follows from eqns (3) and (4) that H' is a function of nine
variables — three components of vector R,, three Eulerian angles of molecule u
(vector A,, is their function), and three Eulerian angles of the studied molecule
(vector A, is their function). Therefore integration in eqn (6) must be carried out
over 18 variables (9 at =0 and 9 at time ¢). Unfortunately the integral cannot be
evaluated analytically. Thus in order to evaluate the integral (6) we expand the
expression H'*(0)H'(t) into the Taylor series with respect to powers of compo-
nents of vector A;, —A; and neglect all powers higher than the second.

We shall further assume that probability density W (€,,0;,t) for Eulerian
angles Q (which define the orientation of molecule) is given according to Ivanov’s
jump model [8] by the following expression

W(82,0;2,6)= > (2L +1)(87") 'D7n(820) Drn( Q) exp (= t/tm)  (7)

L.m,n
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where Dy, are well-known rotation matrices [9] satisfying the following orthogona-
lity relations

[ Drn(R2)DE(2) dQ =87"/(2L + 1) 6116 O (8

If atoms Y in planar XY; molecule are given numbers 1—3 and atom X is given
number 4 then for A, vibration

Cix = (3mY)—”2e,' l= 1, 2, 3 (9)
where e; is unit vector directed from the centre of mass to atom i.

Rather lengthy but straightforward calculation using eqns (6—9) and the Taylor
expansion of expression H'*(0) H'(z) gives the following result

(H™(0)H'(£))or =a*(30my)™" 3 {10%.(0) vu(t) + 8,(0)8,(1)-

“[3(N.(0) N, (1)) — 1] exp (= t/£z0)} (10)

( )Yor denotes averaging over Eulerian angles, N,=R,/R,, a is X—Y bond
length, and t,, is a correlation time of the corresponding rotation matrix. The
symbols y and 6 are defined as follows

Yu = 3Byvu(ayy — 2/R,) + Byxu(ayx— 2/R,) (11)
6, =3Byvu(ayy+ 1/R,) + Byxu(ayx+ 1/R,) (12)

where B, = (hv)"*(dmcw.) " a; Vi exp(— a;R,).

In eqns (11) and (12) time-independent terms were omitted. The next step is
averaging over translational coordinates with probability density given in papers
[10, 11]. However, this averaging cannot be done analytically. Therefore expres-
sions (11) and (12) will be averaged at t=0 and normalized time correlation
function for translation is taken to be

ge=exp(—t/t,) (13)

When averaging at ¢ = 0 we shall use radical distribution function ®(r) = 4nr’u (r),
where N® (r) dr is a number of molecules in spherical layer between radii r, r + dr
and origin is at the centre of the studied molecule (N is a number density).
Averaging gives the following result

H'*(0)H'(t)=a’N(15my)"'{5G exp(—t/t,)+ D exp[— t(t:' + t:0)]}

where (14)

G=4.7rfub Y (r)r*u(r)dr (15)
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D=4xn L " 6%(r) ru(r) dr (16)

and after substituting to eqn (7) we obtain the final result
2nc) ' P(1-0)=(60my) 'a’N(wc) *h 2w *[5Gt,' + D (tz' + t3)] (17)

which gives the contribution of repulsion forces to the bandwidth of fundamen-
tal A, in a liquid composed of planar XY; molecules. For evaluation of expres-
sions G, D the knowledge of radial distribution function is required. If we use the
simplest model, where u (r) =0 for 0<r <d and u (r) = const for r > d and assume
that constants a;, V; are universal (a, V), then G, D are given by the following
expressions

G=Ci(2d’a—6d +5/a) (18)
D =C,(2d*a +6d +5/a) (19)
Co=4ha*V?(cwy) ' exp(—2ad) (20)

If the following typical values are substituted to eqns (17—20), a =150 pm,
d=300pm, a=0.03pm™, V=32x10""°J, t,=2psec, tn=1psec, my=
=2.5%x10""g, @=1000cm ' and N=2.5% 10" cm™, then the contribution of
studied effect to the bandwidth is 1.5 cm™'. Since the observed bandwidths of A,
fundamentals are usually in the interval 6—20cm™' and other effects also
contribute, the theory outlined in this paper gives at least semiquantitative
agreement with experiment.

Discussion

There are two interesting points which concern the extension of theory to
symmetric top molecules. It is interesting that lowering of symmetry from spherical
to axial one did not bring about significant complication and final equations are
only a little more complex than those for XY, molecule [2]. It is also worth
mentioning that while for XY, molecule the contribution to bandwidth depends
only on translational correlation function, for planar XY, molecule this contribu-
tion depends on both the translational and rotational correlation function.
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