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A system of differential equations describing convective drying of very thin 
layers (foils) and films of the coagulated latex consisting of solid latex particles 
and water was derived and numerically solved. The theoretical results were 
compared with some experimental data obtained by investigating convective 
drying of a chloroprene latex foil formed by freeze coagulation of chloroprene 
latex. In contrast to preceding models of drying of this material, the presented 
solution is independent of the time constant determined experimentally. 

The developed method of numerical solution which was solved by means of 
a computer after algorithmization and transcription into language Fortran IV 
enables us to solve a system consisting of two partial differential equations of 
the parabolic type which form a mixed problem with mobile boundary and one 
ordinary differential equation. The agreement of the measured and calculated 
data is very good. 

Были предложены и численно решены системы дифференциальных 
уравнений описывающие конвективную сушку очень тонких слоев 
(фольг) и пленок коагулированного латекса, состоящего по существу из 
частиц латекса и воды. Теоретические результаты были сравнены 
с экспериментальными данными, полученными при изучении конвектив­
ной сушки тонких фольг хлоропренового латекса, производимых путем 
вымораживающей коагуляции последнего. В отличие от ранее представ­
ленных моделей сушки этого материала, настоящее решение не связано 
с эмпирической константой (имеющей размерность времени). 

Разработанный метод численного решения, который после алгорифми-
зации и перевода на язык Фортран IV был осуществлен на самодейству­
ющей вычислительной машине, решает систему, состоящую из двух 
дифференциальных уравнений в частных производных параболического 
вида, образующих задачу смешанного типа с подвижным краем, и одного 
обыкновенного дифференциального уравнения. Соответствие измерен­
ных и рассчитанных данных более чем удовлетворительное. 
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Papers [1—4] contain a detailed description of the physical model of dried latex 
foil. It is based on the idea of a system of the parallel elastic capillaries filled to the 
border with water, the diameter, length, and number of which is a function of 
instantaneous moisture. It is assumed that this model system is an alternative of the 
dried material which, in reality, consists of spherical latex particles and water 
existing in the interspace among the particles. On drying, the latex particles form 
a continuous rubber material. 

In conformity with this model image and a number of assumptions [4], the 
following equations were derived for the length, diameter, and a number of 
capillaries 

Hu = khu (1) 

hu = 2ôu = hs(l + Buý (2) 

QQo 
(3) 

d JlQsdpu 
3p0o (4) 

mu = _9ggl_ 
2nQsd^kôuu (5) 

The above physical model of dried material is schematically represented in 
Fig. 1. 

578 

Fig. 1. Schematic representation of the model of 
dried material. 

Hatched area is latex substance with the proper­
ties 4, c;, Q,, A»; nonhatched area is water in 
capillaries with the properties /, c, Q, A, wc, 
a,,^; area over the surface of material is drying 
medium with the properties U, Q, Qt, h, и>, 

a2, IM. 
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Let us consider such amount of material that contains just 1 kg of latex. The 
origin of the coordinate system is put in the centre of its width. Thus the border of 
capillaries is on the level ôu and this quantity changes with moisture according to 
eqn (2). The surface of material which is in contact with drying medium comprises 
the sum of cross sections of the capillaries Su (the surface of water or the surface of 
evaporation) and the surface consisting of dry latex mass Ss (this is identical with 
total surface of semispheres of the surface layer of latex particles). It is assumed 
that the surface of water is constantly pressed on the level of the border of 
capillaries by the effect of their contraction due to the decreasing content of water. 
The decrease in the cross section of capillaries is caused by the fact that the latex 
particles come near to each other during water evaporation due to the effect of the 
London—van der Waals forces and the space filled with water decreases. Thus the 
water continues to flow to the border of capillaries (to geometrical surface of 
material) and this phenomenon may be explained by the equilibrium of driving 
forces (London—van der Waals forces) and resistance forces. 

It holds for the flow rate of water through capillaries 

/dtf 

--QA* <6 ) 

According to eqn (4), we may write for the loss of water in a unit of time 

(du\ utl>(p"-pt) 
VdW gkôu

 У } 

Equal flow of water comes to the edge of capillaries in interface. By inserting eqn 
(7) into eqn (6), we obtain 

_иЦ(р"-р<) 
Sug kou 

We may write for Su 

or with respect to eqns (2—5) 

Su = ^ (9) 

koug 

The substitution of eqn (10) into eqn (8) gives 

„=W'-/*)= c o n s t ( i J ) 
Q 
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Assuming the only source of heat is the drying medium, we may write the following 
balance for the differential width of the dried material dx (Fig. 1) 

•34 , , at э [-IH 
PsCsSs _ dx — — As _ i3s + As • ~ ^s 

от ox ax 

— a\mujzdu{ts — t) dx (12) 

* „ . , 8 [ « + f H gcSu — dx = - A ̂  Su + A — - — r ^ — - Su + 
dz ox ox 

+ aimundu(ts — t) dx — wcgcSu ^ - dx ( Í3 ) 

After rearrangement and respecting eqns (2), (4), (5), and (10), we obtain 

dts= Э24 3 a i f f o ( 4 - Q , 7 . ч 
Эт ^ Э х 2 g2

sSscsdpkôu
 K ] 

dt Э2/ , 3 a i g o ( u - Q 3ř , t C 4 

d T Эх QsCdpu 3x 

This system of partial differential equations (PDE) is completed by eqn (2) and 
ordinary differential equation (ODE) (7) while the partial pressure of the 
saturated water vapour over interface is governed by a relationship of the type 

P"=P'V) (16) 

which may be e.g. the Antoine equation [5] provided the capillary effects are 
neglected. If we take these effects into account, we obtain 

„ , / -6a^Mg0cos в 
P=P™P[ RTQsdp 

where p' is the pressure of saturated vapour on the noncurved interracial surface at 
a given temperature. 

The initial and boundary conditions for the system of PDE (14) and (15) and 
O D E (7) are as follows 

For r = 0 and O S ^ J C ^ ô^: u = u'0\ ts = t = to (18) 

Э/ 
For x = ôu and 0 ^ r < o o : -A .^ - 1 = a1{u-tt) (19) 

For x = ôu and 0^т<оо: -X^=.a2(t-tt)^(^\j (20) 

7Г*) ( 1 7 ) 
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Forjc = 0 and ° ^ T < o o : ^ = f̂  = 0 (21) 

In addition, it holds 

where 
*=*-(F~I) ( 2 2 ) 

B'=-^ (23) 
QoQ 

^s is the density of the porous nonhomogenized rubber mass arisen after the drying 
of latex. 

Numerical solution of the model 

Eqns (14) and (15) with initial and boundary conditions (18—21) represent 
a mixed problem for a system of two PDE of the parabolic type with one spacial 
coordinate. Eqn (7) with initial condition (18) is the Cauchy's problem for an 
ODE of the first order. The right side of eqn (7) depends on the variable t because 
of eqn (16) and it is the solution of the first problem. On the other hand, some 
coefficients of the PDE system are functions of solution of the ODE (are functions 
of moisture u). Thus we have a bound system of equations which must be solved 
simultaneously. Since eqn (16) is exponential, the problem is not linear and 
because of eqn (2) it has mobile boundary which is expressed by eqns (19) and 
(20). 

An analytical solution of this problem is not known. The numerical solution is 
connected with the following partial problems: selection of the method of 
linearization of the PDE system, development of a proper method of solution of 
the mixed problem for the system of two linear PDE of the parabolic type, selection 
of the method of integration of eqn (7), solution of the problem with mobile 
boundary. 

The method of networks [6—9] in which the values of unknown functions 
t = t(x,T) and ts=ts(x,x) are sought in discrete points — nodes of the network (jcr, 
Tj) was chosen as a basis of numerical solution. 

A method which may be characterized as extrapolation and iteration [6] was 
used for linearization of the problem. Its principle is as follows. We assume that the 
solution of the problem (the values of ŕ, 4, w, ôu) is known in the time profiles from 
r0 to г,. Then the solution in the profile r/+i can be found in this way: 

We estimate the temperature of water on the surface of material by extrapolating 
the known values of the quantity in preceding time profiles and denote this 
estimate by the symbol rSfl-+1. 
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We determine the corresponding value of p°6 by means of eqn (16). 
We integrate ODE (7) with p" = p4 between r, and r/+i and obtain the quantity 

u° corresponding to the used value of p°b. 
By means of the values of p°ó and u° we calculate the coefficients of PDE, 

boundary conditions, and the values of <5° according to eqn (2). 
We solve the mixed problem for PDE (14) and (15) in the interval jce(0,<3°) 

as a linear problem by the method of network by using the values of parameters in 
the time profile ту for initial conditions. The result of this solution gives the values 
r(jc,T/+i) and rs(jc,T/+i). We use the calculated value of ř(o°,T/+i) as a new estimate 
of the temperature of water on the surface of material rÖJ+l and repeat the whole 
procedure from the second step. We shall stop the cycle of iteration if the 
difference between the estimated and calculated value of t6j+i is smaller than the 
precision of calculation fixed beforehand. Then we calculate the definitive values of 
и and p" in a particular time profile and get on to subsequent profile. 

This method enables us simultaneously to solve the problem of mobile boundary. 
The system of PDE is solved in a "fixed" interval for each time profile as well. Of 
course, the spacial step is different for each time profile because of the dependence 
of (5U on u. The value of м, however, depends on time. 

Eqns (14) and (15) with pertinent boundary conditions are after linearization 
a special case of the general problem given by the following system of equations 

vx

 = a\Vxx + b\vx + CiWx + diV + e\W + f\ (24) 

wx = a2Wxx + b2vx + c2wx + d2v + e2w+f2 (25) 

v(xfi) = cp,(x) (26) 

w(x,Q) = cp2(x) (27) 

aio(Vx)x=a = auv + aX2 (28) 

a2o( wx)x=a = a2l w + a22 (29) 

bw(vx)x=h = buv + bi2 (30) 

b20(wx)x=b = b2iw + b22 (31) 

where the functions v and w are, in our case, / and ts and the indices т, JC, XX denote 
the derivative with respect to time, the spacial first-order derivative, and the spacial 
second-order derivative (with respect to single coordinate). The solution is sought 
in the rectangular region xe(ä,b), те(т 0,Тк). The coefficients я ь bi ... b22 are 
constants or functions of JC, T. The functions q>i(x) and cp2(x) are known and in our 
case a = 0 and r0 = 0. 

An approach to solution of the system of eqns (24), (25) by using the implicite 
difference substitution is suggested in paper [6]. It may be shown that the matrix of 
the resulting system of linear algebraic equations is five-diagonal in our case 
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because d = b2 = 0. This system can be solved by the "labour-saving" algorithm 
which is analogous to the method of solution of the three-diagonal matrix [7]. 

ODE (7) was integrated in the interval ту—ту+i by the use of the Runge—Kutta 
method of the fourth order. 

Results and discussion 

The calculations were performed for 6 temperatures of the drying medium: 75, 
85, 100, 110, 120, and 135°C which corresponded to the experiments carried out 
earlier [1]. The range of values of the transfer coefficients au a2, and cp was 
determined from relationships of the type 

StPr = U(Re) (32) 

Sh'Pe~lSc> = f2(Re) (33) 

As the value of <X\ has no significant influence on solution, it was considered to be 
constant and equal to 5.8 w m - 2 K"1. The physical properties of water and latex 
were always assumed to be constant, their values being 

Q = 1000 kg m"3 с = 4200 J kg"1 K 1 

gs = 1230 kg m~3 cs = 2200 J kg"1 K"1 

p; = 850kgm-3 Ss = 0.54 m2 

r = 2.5xl0 6 Jkg" 1 hs = l0~3m 
A = 0.7wm- 1K _ 1 Jp = 0.12xl0" 6 m (according to [101) 
^ = 0.2 w m ^ K " 1 

The value of overall pressure P and partial pressure of water vapour in the flow 
of medium /?f was also constant in all calculations 

P = 1 0 5 P a 

p f =1200Pa 

The Antoine equation [11] in the form 

was applied to calculation of the pressure of saturated vapour in the interface. 
According to eqn (32), the values of the coefficient of heat transfer by 

convection from the drying medium to the surface of material a2 vary in the range 
5—50 w m"2 K"1 [12, 13]. A similar estimate of the range of values of the 
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coefficient of mass transfer ip by using analogous eqn (33) is problematic because 
the value of p" affects the magnitude of ip through рв* which is comprised in Sh' 

while 

Sh'-

PBS~ 

_1рЬрв* 

_ P"-P' 

In *— 

(35) 

(36) 

The calculation of p" from eqn (34) is not possible for temperatures above 100°C 
even if eqn (17) and the values @е(0,л/4) and и^0.1 are applied because the 
values of p">P would be obtained. In this case, eqn (36) loses sense and the 
drying of material is not a diffusion process but it proceeds owing to the difference 
between total pressures. The behaviour of material during drying [1, 10, 14] 
contradicts this opinion. At the same time, it has been ascertained experimentally 
that the temperature of the dried material (measured in the centre of its width) 
approaches very rapidly the temperature of the drying medium so that the 
difference is less than 5°C even if the temperature of the drying medium is 
110—130°C (Fig. 2). These facts lead to the assumption that a greater decrease in 

T/min 

Fig. 2. Temperature of material measured in the centre of its width during drying. 
Temperature of drying medium 

О Temperature of material at U — 130°C 
• Temperature of material at U = 110°C 
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pressure of the saturated vapour of water than required by eqn (17) appears in 
capillaries of the considered model of material. But the character of the relation­
ship (17) remains preserved. This assumption is justified. It is alleged in literature 
[14, 15] that a ten times and even eighty times greater decrease in pressure of the 
saturated vapour than required by eqn (17) appears in the capillaries of the 
3—10 jam diameter if the angles of wetting are smailer than я/4. Of course, the 
problem is open how the value of p" should be estimated in a given case. For this 
reason, eqn (34) was applied to the numerical calculation of p". This equation gave 
the values p">P at rf>100°C, but that was "compensated" by the choice of 
intentionally "low" values of the coefficient of mass transfer гр. In this relation, the 
"low" value of this coefficient is a value which is approximately by two decimal 
orders smaller than the value calculated from eqn (33) for temperatures under 
100°C. While this relationship gives values of ip varying in the range 4 x 10~7—7 x 
10~7 s m - 1, we used the values 4 x 10~9—7 x 10~9 s m - 1 for numerical calculations. 

The course of theoretical relationships u/u0 = t(r) in confrontation with experi­
mental course of these relationships is represented in Fig. 3 which shows that the 

Fig. 3. Theoretical and experimental relationships u/u'0 = i{x). 
Theoretical curves: Í. fc = 75°C; a2 = 300 w пГ2 К - 1 ; гр=4 x Ю - 9 s m - 1 ; 

2. b = 85°C; a2 = 300 w m"2 K"1; y = 4 x 10"9 s m"1; 
3. t, = 100°C; a2 = 120 w m"2 K - 1 ; V = 4.7 x 10"9 s m"1; 
4a. U = 110°C; a2 = 120 w m"2 K - 1 ; V = 4.7 x 10 - 9 s m"1; 
4b. u = 110°C; a2 = 120 w m"2 K - 1 ; ^ = 5.7 x 10 - 9 s m - 1 ; 
5. U = 120°C; a2 = 110 w m"2 K"1; V = 5.7 x 10"9 s m"1; 
6. U = 135°C; a2 = 110 w m"2 K - 1 ; ^ = 6.0 x КГ 9 s m"1. 

Experimental values: € U = 75°C; 0 u = 85°C; • U = 100°C; Ф U = 110°C; 
Ог, = 120°С;ф^ = 135°С 

dem. zvestí 35 (5) 577—590 (1981) 585 



I. LANGFELDER, I. RAIS 

model is in a very good harmony with reality. This statement is also valid if the 
temperatures of the drying medium are 75 and 85°C irrespective of apparent 
disagreement between theory and reality under these conditions. As a matter of 
fact, the graph describes only the initial stage of process for these temperatures of 
the medium. The material is dried after 200—250 min and the time axis is drawn 
only up to about 60 min. In the more advanced stage (not included in graphical 
representation), the consistence of theoretical and real course is much better. 

It is characteristic of all temperatures of the drying medium that the theoretical 
values of UQIU'O are in the initial stage of the process higher than the real ones and 
on the contrary, the theoretical course is somewhat more rapid than the experimen­
tal in the advanced stage of the process. The explanation of these facts ensues from 
the relation of the physical model to the real dried material. In the real material 
there are also larger "pores" which contain the "fully nonbound" moisture (water) 
which easily and rapidly escapes in the early stage of the process. On the other 
hand, other portions of moisture can be bound in material more tightly than it 
should correspond to the interaction between moisture and surface of the latex 
particles. This fact manifests itself by retardation of the process in comparison with 
the theoretical course. 

The good agreement of theoretical and experimental relations u/uó(r) was 
achieved after several preceding "numerical experiments" in which different 
variants of the numerical values ip and a2 were examined. The influence of the 
value of ip on the course of the theoretical relationship и/и'0(т) is illustrated in 
Fig. 3 where curves 4a and 4b, both for /f = 110°C and a 2 = 120 w m~2 K"\ are 
represented. Curve 4a corresponds to ip = A.l x 10~9 s m - 1 and curve 4b to 
rp = 5.7 x 10~9 s m - 1 . The sensitivity of the above courses to the value of a2 is also 
observable, which is in harmony with the physical essence of this quantity. 

As obvious from Fig. 3, the illustrated good agreement of theory and experiment 
was achieved for the values of гр and a2 which were different from the values 
resulting from relationships (32) and (33). The values of гр used for calculation are 
smaller and the values of a2 are two times and even four times greater than the 
values resulting from the above relationships. The choice of smaller values of гр has 
been discussed. The problem of suitability of higher values of a2 requires a special 
analysis which has not yet been performed. Anyway, because of these facts, we 
must regard the quantities гр and a2 as parameters of solution and not as 
coefficients of transfer. 

At first sight, a comparison of the results of solution based on this model with the 
model image according to [4] may make the impression that the presented model 
and the method of solution are too complicated and tedious and that there are no 
substantial differences in the agreement of theoretical and experimental results. 
But the solution according to paper [4] implies the knowledge of the experimental 
constant K, the model idea does not adequately enough depict the simultaneous 
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transfer of heat and mass in the process and it is assumed that the product 
гр(р" — PÍ) is constant during drying. On the other hand, the presented model is 
a result of more consequent elaboration of the ideas on which the solution 
according to [4] is based and is a more convenient approximation to the real 
mechanism of the process. Moreover, the parameters of solution of the model гр 
and a2 have a certain relation to the coefficients of heat and mass transfer. For this 
reason, it is justifiable to consider the presented model and its solution to be more 
realistic than the preceding stage of development in the command of this problem 
as described in paper [4]. 

Acknowledgements. The authors are indebted to P. Švaňa for his help in carrying out and 
evaluating numerical calculations. 

Symbols 

a coefficients of t h e r m a l conductivity of water Ux~x 

ä limit of the interval of solution for the 
problem given by the system of eqns (24—31) 

as coefficient of t h e r m a l conductivi ty of latex L2r~l 

Яи я 2 , аы ••• a22 coefficients in t h e system of eqns (24—31) 
b limit of t h e interval of solution for t h e 

prob lem given by t h e system of eqns (24—31) 
bi, b2, bm ... b22 coefficients in the system of eqns (24—31) 
В quantity defined by eqn (3) M~l 

B' quantity defined by eqn (23) M~l 

с specific heat capacity of water L2r~2T~l 

cf specific heat capacity of drying m e d i u m L 2 r " 2 Г " 1 

cs specific heat capacity of latex L2r~2T~l 

cl coefficient in eqn (24) 
c2 coefficient in eqn (25) 
dx coefficient in eqn (24) 
d2 coefficient in eqn (25) 
dp mean diameter of a latex particle L 
du d iameter of model capillary L 
D coefficient of diffusion of water vapour 

in drying medium L2r~l 

ex coefficient in eqn (24) 
e2 coefficient in eqn (25) 
fx coefficient in eqn (24) 
f2 coefficient in eqn (25) 
д acceleration of gravity Lx~2 

0o weight of dry substance in cons idered 
a m o u n t of dried mater ia l M 

К width of dry latex foil L 
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ML~l r-2 

ML^t-2 

ML-'т-2 

LH'2 

L2Mt-2n- •ľp-\ 

hu width of moist latex foil L 
Hu length of model capillary L 
k constant of proportionality in eqn (1) 
L characteristic dimension of material L 
m u number of model capillaries 
p ' pressure of saturated water vapour over 

noncurved level ML~xx~ 
p" pressure of saturated water vapour in interface ML~xx~ 
pf partial pressure of water vapour in the flow 

of drying medium 
PB, logarithmic mean of partial pressures of inert 

in interface and in the main flow of drying medium 
P overall pressure of medium 
Pe Peclet number for drying medium 
Pr Prandtl number for drying medium 
r heat of evaporation of water 
R universal gas constant 
Re Reynolds number for drying medium 
Sh' Sherwood number for drying medium 
S% portion of the surface of material formed 

by latex substance L 2 

Sc Schmidt number for drying medium 
St Stanton number for drying medium 
Su surface of evaporation equal to overall cross 

section of model capillaries L 2 

t temperature of water T 
tt temperature of drying medium T 
to initial temperature of material T 
t% temperature of latex substance T 
T absolute temperature of saturated vapour in interface T 
u weight of water in dried material M 
ц, initial weight of water in dried material M 
u'o initial weight of water in dried material 

modified according to eqn (22) M 
v generalized function of time and coordinate 
v(x,0) function v in the time moment т = 0 
vx first derivation of v with respect to coordinate 
(̂ x)x-e value of vx for x = a 
(vx)x-b value of vx for x = b 
€„ second derivation of v with respect to coordinate 
vr derivation of v with respect to time 
w mean velocity of drying medium Lx~x 

w generalized function of time and coordinate 
wc mean rate of water flow in model capillary Lx~x 

H>(JC,0) function w in the time moment т = 0 
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wx first derivation of w with respect to coordinate 
(wM)x-a value of wx for x = a 
(w*)x-b value of wx for x = b 
wu second derivation of w with respect to coordinate 
wT derivation of w with respect to time 
a, coefficient of heat transfer of water in capillaries 
Oj coefficient of heat transfer of drying medium 
<5S half-width of dry foil 
<5U half-width of moist foil 
Ô& initial half-width of foil 
0 angle of wetting 
A thermal conductivity of water 
A, thermal conductivity of medium 
Ae thermal conductivity of latex 
\i dynamic viscosity of water 
ft dynamic viscosity of medium 
g density of water 
gf density of medium 
gt density of latex 
Q'S density of nonhomogenized latex substance 

in the state after drying ML 
r time 
<p, function of coordinate 
<p2 function of coordinate 
ip coefficient of mass transfer L ~ l 

Og, surface tension of water in the interface 
water—saturated vapour Mr" 

Dimensionless quantities 

p e=^ ; pr=ft; * e = ^ ; &=-£-
D A , j u , CfDQf 

w = fe . st="-
Dgf ' cfwQ{ 
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