Solution of a theoretical model of convective drying of latex foils
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A system of differential equations describing convective drying of very thin
layers (foils) and films of the coagulated latex consisting of solid latex particles
and water was derived and numerically solved. The theoretical results were
compared with some experimental data obtained by investigating convective
drying of a chloroprene latex foil formed by freeze coagulation of chloroprene
latex. In contrast to preceding models of drying of this material, the presented
solution is independent of the time constant détermined experimentally.

The developed method of numerical solution which was solved by means of
a computer after algorithmization and transcription into language Fortran IV
enables us to solve a system consisting of two partial differential equations of
the parabolic type which form a mixed problem with mobile boundary and one
ordinary differential equation. The agreement of the measured and calculated
data is very good.

Bbuii npeanoxeHsl U YUCIEHHO pellieHbl cHcTeMbl AndepeHINaNbHBIX
yPaBHEHHMIi OMKCHIBAIOIME KOHBEKTHBHYIO CYLIKY OYEHb TOHKHX CJIOEB
(dponbr) M nIEHOK KOaryn1MpoBaHHOTO J1aTEKCa, COCTOSLLETO MO CYLIECTBY M3
YacTHll naTekca M BOAbl. TeopeTHYecKHe pe3yabTaTbl ObLIM CPaBHEHbI
C 3KCNEPUMEHTAILHBIMH IaHHBIMH, MOJYYEHHBIMH NMPH U3y4EHUH KOHBEKTHB-
HOW CYIIKM TOHKHMX (POJIbT XJIOPONPEHOBOrO JIaTeKca, MPOM3BOAMMBIX MyTEM
BbIMOPaXMBaIOLLEH KOaryisiiMu nocnegHero. B otnuyue ot paHee npeacTas-
NEHHbIX MOJiENIEH CYLLKH 3TOrO MaTepHuaa, HacTOsILIEE PEILEHHE He CBH3aHO
C 3MNUPHYECKOH KOHCTAHTOMH (MMEIOLIEH pasMEPHOCThL BPEMEHH).

Pa3spaGoTaHHbIi METOJ| YUCIIEHHOTO PELLEHHS, KOTOPbIH NMOocje anropupmu-
3auuu M nepeBofa Ha s3bik Poprpan IV 6bin ocylecTBiEeH Ha caMOAEHCTBY-
IOIEH BBIYHUCIHTENLHON MalllMHE, PEIIAeT CHCTEMY, COCTOSILYIO M3 JBYX
AnddepeHUHaNbHBIX ypaBHEHUH B 4aCTHBIX NMPOW3BOHBIX NapaGoNnyecKoro
BHAa, 06pa3yloLIMX 3afaqy CMELUIAHHOTO THMA C MOABHXHBIM KPAaeM, U OTHOTO
06bIKHOBEHHOTO . inpepeHuanbHoro ypasHeHus. CoOTBETCTBUE M3MEPEH-
HbIX M PAaCCYMTAHHBIX JAHHbIX GoNee YeM yNOBJIETBOPHTENLHOE.
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Papers [1—4] contain a detailed description of the physical model of dried latex
foil. It is based on the idea of a system of the parallel elastic capillaries filled to the
border with water, the diameter, length, and number of which is a function of
instantaneous moisture. It is assumed that this model system is an alternative of the
dried material which, in reality, consists of spherical latex particles and water
existing in the interspace among the particles. On drying, the latex particles form
a continuous rubber material.

In conformity with this model image and a number of assumptions [4], the
following equations were derived for the length, diameter, and a number of
capillaries

H.= kh, (1)
h.=268,= hy(1+ Bu)} (2)
B =£) (3)

s oo *)

The above physical model of dried material is schematically represented in
Fig. 1.

Fig. 1. Schematic representation of the model of
dried material.
Hatched area is latex substance with the proper-
ties &, G, @, A; nonhatched area is water in
capillaries with the properties ¢, ¢, o, &, w.,
a,,u ; area over the surface of material is drying
medium with the properties &, ¢, On A, W,
Oz, L.
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Let us consider such amount of material that contains just 1 kg of latex. The
origin of the coordinate system is put in the centre of its width. Thus the border of
capillaries is on the level d, and this quantity changes with moisture according to
eqn (2). The surface of material which is in contact with drying medium comprises
the sum of cross sections of the capillaries S, (the surface of water or the surface of
evaporation) and the surface consisting of dry latex mass S (this is identical with
total surface of semispheres of the surface layer of latex particles). It is assumed
that the surface of water is constantly pressed on the level of the border of
capillaries by the effect of their contraction due to the decreasing content of water.
The decrease in the cross section of capillaries is caused by the fact that the latex
particles come near to each other during water evaporation due to the effect of the
London—van der Waals forces and the space filled with water decreases. Thus the
water continues to flow to the border of capillaries (to geometrical surface of
material) and this phenomenon may be explained by the equilibrium of driving
forces (London—van der Waals forces) and resistance forces.

It holds for the flow rate of water through capillaries

du
According to eqn (4), we may write for the loss of water in a unit of time
_(duw\ _uy(p"—po)
(dr) kb, (7)

Equal flow of water comes to the edge of capillaries in interface. By inserting eqn
(7) into eqn (6), we obtain

= ””éfﬁuka”) (8)
We may write for S,
Su=2mund5 9)°
4
or with respect to eqns (2—5)
Su=15. 5 (10)

The substitution of eqn (10) into eqn (8) gives

LV dlnd /) NP~ (11)
Q
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Assuming the only source of heat is the drying medium, we may write the following
balance for the differential width of the dried material dx (Fig. 1)

r o an
o o, 2|s5e dx]

QsCsSs 8_17 dx=— A‘s Ay Ss+ A-s 5% Ss_

—aym,md,(t,—t) dx (12)

ot

3 [t+— dx]
ot ot ox
QCSua—de——la’Su+l—ax S.+
ot

+ aymumd,(t,— t) dx — weocS, 3x dx (13)

After rearrangement and respecting eqns (2), (4), (5), and (10), we obtain
Ak _ , &k _3ago(t—1)

; 8‘[— ks axz gsZSsCsdpkéu (14)
ot _ 3%  3augo(t—1) at
ar %5t o.cdyu ‘ox (L5)

This system of partial differential equations (PDE) is completed by eqn (2) and
ordinary differential equation (ODE) (7) while the partial pressure-of the
saturated water vapour over interface is governed by a relationship of the type

p'=p"(1) (16)

which may be e.g. the Antoine equation [5] provided the capillary effects are
neglected. If we take these effects into account, we obtain

"= ' ex (——605,1\490 cos @)
p=p oxp RTo.d,u

(17)

where p’ is the pressure of saturated vapour on the noncurved interfacial surface at
a given temperature. '

The initial and boundary conditions for the system of PDE (14) and (15) and
ODE (7) are as follows

For t=0 and O0sx<duw:u=ub; t.=t=t (18)
For x=46, and 0<t<o: —Lg—f‘:=az(ts—t;) (19)

I
S.
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For x=0 and O<r<w:%=%= (21)
In addition, it holds
uy= uo—(g—,—%) (22)
where
B’ _ 0 (23)

goQ

0s is the density of the porous nonhomogenized rubber mass arisen after the drying
of latex.

Numerical solution of the model

Eqns (14) and (15) with initial and boundary conditions (18—21) represent
a mixed problem for a system of two PDE of the parabolic type with one spacial
coordinate. Eqn (7) with initial condition (18) is the Cauchy’s problem for an
ODE of the first order. The right side of eqn ( 7) depends on the variable ¢ because
of eqn (16) and it is the solution of the first problem. On the other hand, some
coefficients of the PDE system are functions of solution of the ODE (are functions
of moisture u). Thus we have a bound system of equations which must be solved
simultaneously. Since eqn (16) is exponential, the problem is not linear and
because of eqn (2) it has mobile boundary which is expressed by eqns (19) and
(20).

An analytical solution of this problem is not known. The numerical solution is
connected with the following partial problems: selection of the method of
linearization of the PDE system, development of a proper method of solution of
the mixed problem for the system of two linear PDE of the parabolic type, selection
of the method of integration of eqn (7), solution of the problem with mobile
boundary.

The method of networks [6—9] in which the values of unknown functions
t=t(x,t) and t,= t,(x,7) are sought in discrete points — nodes of the network (xi,
7;) was chosen as a basis of numerical solution.

A method which may be characterized as extrapolation and iteration [6] was
used for linearization of the problem. Its principle is as follows. We assume that the
solution of the problem (the values of ¢, 4, u, 8.) is known in the time profiles from
To to 7;. Then the solution in the profile 1., can be found in this way:

We estimate the temperature of water on the surface of material by extrapolating
the known values of the quantity in preceding time profiles and denote this
estimate by the symbol 1§ ;..

Chem. zvesti 35 (5) 577—590 (1981) 581



I. LANGFELDER, I. RAIS

We determine the corresponding value of p3 by means of eqn (16).

We integrate ODE (7) with p” = p§ between 7; and 7., and obtain the quantity
u® corresponding to the used value of p3. ’

By means of the values of p3 and u® we calculate the coefficients of PDE,
boundary conditions, and the values of ° according to eqn (2).

We solve the mixed problem for PDE (14) and (15) in the interval xe(0,6°)
as a linear problem by the method of network by using the values of parameters in
the time profile t; for initial conditions. The result of this solution gives the values
t(x,7+1) and t(x,7;+1). We use the calculated value of t(8°7;.:) as a new estimate
of the temperature of water on the surface of material £3;., and repeat the whole
procedure from the second step. We shall stop the cycle of iteration if the
difference between the estimated and calculated value of # ;. is smaller than the
precision of calculation fixed beforehand. Then we calculate the definitive values of
u and p” in a particular time profile and get on to subsequent profile.

This method enables us simultaneously to solve the problem of mobile boundary.
The system of PDE is solved in a “fixed” interval for each time profile as well. Of
course, the spacial step is different for each time profile because of the dependence
of 8, on u. The value of u, however, depends on time.

Eqns (14) and (15) with pertinent boundary conditions are after linearization
a special case of the general problem given by the following system of equations

U=V + bt oW +divt+ew+f, (24)
Wi = QWu + bl + oW+ a0+ W+ fo (25)
U(x,0) = i(x) (26)

#(x,0) = p:(x) (27)

A10(Vx)xma = an? + arz (28)

A20(Wr) x=a = G0 W + a2 (29)
b10(Vx)x=p = b11 D + b1z (30)

b2o( Wi )x=b = b2y W + b2z (31

where the functions ¢ and w are, in our case, t and t, and the indices 7, x, xx denote
the derivative with respect to time, the spacial first-order derivative, and the spacial
second-order derivative (with respect to single coordinate). The solution is sought
in the rectangular region xe(a,b), te (7o, ). The coefficients ai, b, ... bz are
constants or functions of x, 7. The functions @:(x) and @.(x) are known and in our
case a=0 and 17,=0.

An approach to solution of the system of eqns (24), (25) by using the implicite
difference substitution is suggested in paper [6]. It may be shown that the matrix of
the resulting system of linear algebraic equations is five-diagonal in our case
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because ¢, = b,=0. This system can be solved by the “labour-saving” algorithm
which is analogous to the method of solution of the three-diagonal matrix [7].

ODE (7) was integrated in the interval ,—t;., by the use of the Runge—Kutta
method of the fourth order.

Results and discussion

The calculations were performed for 6 temperatures of the drying medium: 75,
85, 100, 110, 120, and 135°C which corresponded to the experiments carried out
earlier [1]. The range of values of the transfer coefficients @i, @, and @ was
determined from relationships of the type

StPré =f,(Re) (32)
Sh' Pe™'Sc3 =f,(Re) (33)
As the value of a, has no significant influence on solution, it was considered to be

constant and equal to 5.8 wm™2 K™'. The physical properties of water and latex
were always assumed to be constant, their values being

0=1000 kg m™® c=4200J kg™' K™
0s=1230 kg m™ ¢=2200J kg ' K™'
0:=850 kg m™ S,=0.54 m*
r=2.5x10°J kg™' h,=10"m
A=07wm' K™ d,=0.12x107° m (according to [10])
A=02wm™ K™

The value of overall pressure P and partial pressure of water vapour in the flow
of medium p; was also constant in all calculations

P=10"Pa
pe=1200 Pa
The Antoine equation [11] in the form

P o 17306
08 133325 =807~ 132334 (34)

was applied to calculation of the pressure of saturated vapour in the interface.
According to eqn (32), the values of the coefficient of heat transfer by

convection from the drying medium to the surface of material a; vary in the range

5—50 wm™ K™ [12, 13]. A similar estimate of the range of values of the
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coefficient of mass transfer ¥ by using analogous eqn (33) is problematic because
the value of p” affects the magnitude of 3 through pg, which is comprised in Sh’

L
= (35)
while
__p'—p 36
Pss I P—p ( )
P_p"

The calculation of p” from eqn (34) is not possible for temperatures above 100°C
even if eqn (17) and the values @€ (0,7/4) and u=0.1 are applied because the
values of p”"> P would be obtained. In this case, eqn (36) loses sense and the
drying of material is not a diffusion process but it proceeds owing to the difference
between total pressures. The behaviour of material during drying [1, 10, 14]
contradicts this opinion. At the same time, it has been ascertained experimentally
that the temperature of the dried material (measured in the centre of its width)
approaches very rapidly the temperature of the drying medium so that the
difference is less than 5°C even if the temperature of the drying medium is
110—130°C (Fig. 2). These facts lead to the assumption that a greater decrease in

t/°c T I I T T T
<[V eGP

110

90

0 -

S0 -

1 1 1 1 1
0 5 0 15 20 25 T/min

Fig. 2. Temperature of material measured in the centre of its width during drying.
- — — — — Temperature of drying medium

O Temperature of material at =130°C
@ Temperature of material at ¢ =110°C
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pressure of the saturated vapour of water than required by eqn (17) appears in
capillaries of the considered model of material. But the character of the relation-
ship (17) remains preserved. This assumption is justified. It is alleged in literature
[14, 15] that a ten times and even eighty times greater decrease in pressure of the
saturated vapour than required by eqn (17) appears in the capillaries of the
3—10 um diameter if the angles of wetting are smailer than n/4. Of course, the
problem is open how the value of p” should be estimated in a given case. For this
reason, eqn (34) was applied to the numerical calculation of p". This equation gave
the values p”">P at £#>100°C, but that was ‘“‘compensated” by the choice of
intentionally “low” values of the coefficient of mass transfer . In this relation, the
“low” value of this coefficient is a value which is approximately by two decimal
orders smaller than the value calculated from eqn (33) for temperatures under
100°C. While this relationship gives values of v varying in the range 4 X 107—7 x
1077 s m™*, we used the values 4 X 10°—7 x 10~ s m™* for numerical calculations.

The course of theoretical relationships u/uo=£(t) in confrontation with experi-
mental course of these relationships is represented in Fig. 3 which shows that the

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0 10 20 30 40 50 T/min

Fig. 3. Theoretical and experimental relationships u/us =£(7).
Theoretical curves: 1. 4=75°C; @, =300 wm > K'; =4x10°sm™*;

2.4=85C; &;=300wm?>K™"; y=4x10"sm™;

3.4=100°C; @;=120 wm™>K™'; ¢ =4.7%x10°sm™;

4a.=110C; 0, =120 wmZK™; y=4.7x10°sm™*;
4b.£=110°C; ;=120 wm > K™'; =5.7x10°sm™;
5.4=120°C; ;=110 wm™ K™'; =5.7x10sm™;
6.4=135°C; ;=110 wm™K™'; =6.0x10°sm™".

Experimental values: © £,=75°C; © £=85°C; @ ,=100°C; ® £t =110°C;

O 4=120°C; ®#=135°C.
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model is in a very good harmony with reality. This statement is also valid if the
temperatures of the drying medium are 75 and 85°C irrespective of apparent
disagreement between theory and reality under these conditions. As a matter of
fact, the graph describes only the initial stage of process for these temperatures of
the medium. The material is dried after 200—250 min and the time axis is drawn
only up to about 60 min. In the more advanced stage (not included in graphical
representation), the consistence of theoretical and real course is much better.

It is characteristic of all temperatures of the drying medium that the theoretical
values of uo/ug are in the initial stage of the process higher than the real ones and
on the contrary, the theoretical course is somewhat more rapid than the experimen-
tal in the advanced stage of the process. The explanation of these facts ensues from
the relation of the physical model to the real dried material. In the real material
there are also larger ““pores’” which contain the “fully nonbound” moisture (water)
which easily and rapidly escapes in the early stage of the process. On the other
hand, other portions of moisture can be bound in material more tightly than it
should correspond to the interaction between moisture and surface of the latex
particles. This fact manifests itself by retardation of the process in comparison with
the theoretical course.

The good agreement of theoretical and experimental relations u/uo(t) was
achieved after several preceding ‘‘numerical experiments” in which different
variants of the numerical values ¥ and a, were examined. The influence of the
value of ¥ on the course of the theoretical relationship u/uo(7) is illustrated in
Fig. 3 where curves 4a and 4b, both for £=110°C and a,=120 wm™> K™, are
represented. Curve 4a corresponds to ¥=4.7x10"°sm™ and curve 4b to
¥ =>5.7x10""s m~". The sensitivity of the above courses to the value of a; is also
observable, which is in harmony with the physical essence of this quantity.

As obvious from Fig. 3, the illustrated good agreement of theory and experiment
was achieved for the values of 9 and a, which were different from the values
resulting from relationships (32) and (33). The values of v used for calculation are
smaller and the values of a, are two times and even four times greater than the
values resulting from the above relationships. The choice of smaller values of 1 has
been discussed. The problem of suitability of higher values of a, requires a special
analysis which has not yet been performed. Anyway, because of these facts, we
must regard the quantities ¥ and o, as parameters of solution and not as
coefficients of transfer.

At first sight, a comparison of the results of solution based on this model with the
model image according to [4] may make the impression that the presented model
and the method of solution are too complicated and tedious and that there are no
substantial differences in the agreement of theoretical and experimental results.
But the solution according to paper [4] implies the knowledge of the experimental
constant K, the model idea does not adequately enough depict the simultaneous
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transfer of heat and mass in the process and it is assumed that the product
y(p" — pe) is constant during drying. On the other hand, the presented model is
a result of more consequent elaboration of the ideas on which the solution
according to [4] is based and is a more convenient approximation to the real
mechanism of the process. Moreover, the parameters of solution of the model vy
and a, have a certain relation to the coefficients of heat and mass transfer. For this
reason, it is justifiable to consider the presented model and its solution to be more
realistic than the preceding stage of development in the command of this problem

as described in paper [4].

Acknowledgements. The authors are indebted to P. Svaria for his help in carrying out and

evaluating numerical calculations.

Symbols
a coefficients of thermal conductivity of water
a limit of the interval of solution for the
problem given by the system of eqns (24—31)
a, coefficient of thermal conductivity of latex
ay, @y, Ay ... Gy coefficients in the system of eqns (24—31)
b limit of the interval of solution for the

problem given by the system of eqns (24—31)
by, by, by ... by, coefficients in the system of eqns (24—31)

B quantity defined by eqn (3)

B’ quantity defined by eqn (23)

c specific heat capacity of water

G specific heat capacity of drying medium

C, specific heat capacity of latex

¢ coefficient in eqn (24)

C coefficient in eqn (25)

d, coefficient in eqn (24)

d, coefficient in eqn (25)

d, mean diameter of a latex particle

d, diameter of model capillary

D coefficient of diffusion of water vapour
in drying medium

e, coefficient in eqn (24)

e coefficient in eqn (25)

fi coefficient in eqn (24)

f coefficient in eqn (25)

g acceleration of gravity

9o weight of dry substance in considered
amount of dried material

h, width of dry latex foil
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width of moist latex foil

length of model capillary

constant of proportionality in eqn (1)
characteristic dimension of material

number of model capillaries

pressure of saturated water vapour over
noncurved level ]

pressure of saturated water vapour in interface
partial pressure of water vapour in the flow
of drying medium

logarithmic mean of partial pressures of inert
in interface and in the main flow of drying medium
overall pressure of medium

Peclet number for drying medium

Prandtl number for drying medium

heat of evaporation of water

universal gas constant

Reynolds number for drying medium
Sherwood number for drying medium

portion of the surface of ‘material formed

by latex substance

Schmidt number for drying medium

Stanton number for drying medium

surface of evaporation equal to overall cross
section of model capillaries

temperature of water

temperature of drying medium

initial temperature of material

temperature of latex substance

absolute temperature of saturated vapour in interface
weight of water in dried material

initial weight of water in dried material

initial weight of water in dried material
modified according to eqn (22)

generalized function of time and coordinate
function ¢ in the time moment 7=0

first derivation of © with respect to coordinate
value of ¥, for x=a

value of ¥, for x=»5

second derivation of © with respect to coordinate
derivation of v with respect to time

mean velocity of drying medium

generalized function of time and coordinate
mean rate of water flow in model capillary
function w in the time moment t=0

ML 't
ML-'t?

ML 't
ML 72
ML-'2

L2 .r-2
L*Mzt2n'T!

Lz

T ORRNNNSNND

Lt

Lt
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first derivation of w with respect to coordinate

(Wy)xma value of w, for x=a
(W )ems value of w, for x=5b .
Wt second derivation of w with respect to coordinate
W, derivation of w with respect to time
a, coefficient of heat transfer of water in capillaries M3T!
@, coefficient of heat transfer of drying medium Mz=T!
8, half-width of dry foil L
b, half-width of moist foil L
b0 initial half-width of foil L
e angle of wetting
A thermal conductivity of water ML3T!
A thermal conductivity of medium MLzT™
A, thermal conductivity of latex MLzT
I dynamic viscosity of water MLt
th dynamic viscosity of medium ML"'r™
0 density of water ML-?
o density of medium -3
o density of latex ML
0. density of nonhomogenized latex substance
in the state after drying ML"3
T time
o function of coordinate
(3 function of coordinate
('} coefficient of mass transfer L™
Oy surface tension of water in the interface
water—saturated vapour Mz

Dimensionless quantities

pe=L¥. p_Gl, poLlve. g A

= D’ l' 5 e ’ - G DQ(
L a
p =Yl gy o
S Do, CWO,
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