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In this paper we discuss the systems forming one-side or both-sides limiting 
solid solutions in which either eutectoid or peritectoid reactions can take place. 
The equations of the curve of monovariant equilibrium which connects the 
transition point of polymorphic modification of pure component with eutectoid 
point are derived. If a pure solid compound is in equilibrium with solid solution 
it is possible to derive from this equation the relationship similar to the first 
criterion of thermodynamic consistency describing the course of liquidus curve 
in the vicinity of melting point of pure substance. 

В работе обсуждаются системы, образующие односторонние или двух
сторонние твердые растворы, в которых протекают эвтектоидные или 
перитектоидные реакции. Получены уравнения, связьгеающие точки 
перехода полиморфных модификаций чистых компонентов с эвтектоид-
ной точкой. Если чистое твердое соединение находится в равновесии 
с твердым раствором, возможно из этого уравнения получить отношение 
похожее на первый критерий термодинамической конзистентности, 
описывающее ход кривых ликвидуса в окрестности точки плавления 
чистого вещества. 

1. Only eutectoid type reactions occur in the systems 

We shall pay attention only to the most characteristic types of these systems, viz. 
to the systems with limiting solid solutions formed on one side, to the systems 
having limiting solid solutions on both sides and one eutectoid point and lastly to 
the systems with both-sides limiting solid solutions and two eutectoid points. 

Systems having limiting solid solutions on one side 

The corresponding phase diagrams are plotted in Figs. 1 and 2. In the first phase 
diagram (Fig. 1) there is a simple eutectoid point e. If we take heat from the system 
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Fig. 1. Phase diagram of the condensed system A—Bi (B2) with limiting one-side solid solution formed 
on the basis of high temperature polymorphic modification B". 
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Fig. 2. Phase diagram of the condensed system A—Bi (B2) with limiting one-side solid solutions formed 
on the basis of both polymorphic modifications of component B. 

a limiting solid solution B* which is formed on the basis of the modification Bi and 
the composition of which corresponds to the point e decomposes according to the 
scheme 

B'.(e) A 0 S (M)+BS S (N) (1) 

Therefore in equilibrium the solution B? coexists with pure solid substance A and 
B2. Because Y = к — f + 1 = 2 — 3 + 1 = 0 the equilibrium is nonvariant which is an 
analogue to a simple eutectic crystallization. 
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The eutectoid point e lies on the intersection of the part of binoidal curve (e, D) 
(which corresponds to the solubility of component A in solid solution formed on 
the basis of high temperature modification of the component B) and of the curve 
(V\ e). The latter curve corresponds to the limiting solid solution which is formed 
on the basis ot high temperature modification Bi and which is saturated with the 
low temperature modification B2. 

B*iBA == G°'S(BJ 

Fig. 3. Three-term cycles for mass and Gibbs 
energy changes (isothermal-isobaric) used for 
derivation of the equation of monovariant phase 
coexistence of the limiting solid solution formed 
on the basis of high temperature modification 

Bi (i.e. Bi) with pure solid phase В?*". 

B* Ä B2 5S(B1) = 5$(В2) 

Fig. 4. Four-term cycles for mass and Gibbs 
energy changes (isothermal-isobaric) used for 
derivation of the equation of monovariant phase 
coexistence of limiting solid solutions Bi and B2. 

For derivation of equation of the curve of monovariant equilibrium (V\ e) we 
shall use the method of isothermal-isobaric A G cycle as it has been described in 
[1]. Férland and Krogh-Moe have solved this problem using another approach [2]. 

It holds (Fig. 3) 

2 A G = AG2'1 + AG3'2 + AG13 = 0 

AG21 = G° s(Bi) - G° S(B2) = 4CF(B,/B2) 

AG32 = G s (B0- G0's(Bx) = RTIn *s(Bi) 

The condition of phase equilibrium is 

AG13 = G0' S(B2) - Gs(B0 = 0 

Thus 

KT In as(Bi)= - 4Gtr(B,/B2)= - [ Л / Г ^ / В г ) - TASrQ&i/Bi)] 

which can be written also as 

, s , ü 4 zlfítr(B1/B2) r 1 11 
(2) 
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The relationship (2) holds exactly when ^//"(Вх/Вг) does not depend on tem
perature. As usually T*r — T(e) < 100—150 К it is possible to use eqn (2) with 
sufficient accuracy even when the assumption on temperature independence of the 
quantity АН"Т{В^1В2) is not fulfilled. 

Eqn (2) is completely analogous to the LeChatelier—Shreder equation which 
describes the course of liquidus curves in simple eutectic systems. This circum
stance is important not only from the point of view of systematic development of the 
theory of heterogeneous equilibria but also for laboratory praxis. It is known that 
course of the curves (D, E) and (T r , e) can be experimentally determined only with 
difficulties. On the other hand, the quantities Т*Г(В,/В2), Arr(Bi/B2), and T(e) 
can be measured relatively easily. Then using eqn (2) we can calculate coordinates 
of the point e. It is often sufficient to assume ideal behaviour only of the limiting 
solid solution which is formed on the basis of modification B b In all other cases it is 
sufficient to employ a simple "universal" relationship [3] 

ö(/) = x(/)[exp kst(j/i)]; kSt(j/i) = const (3) 

From eqn (2) it follows that 

This relationship is the criterion of thermodynamic consistency I modified for 
equilibrium of the type "solidus I—solidus II". In case of the system presented in 
Fig. 1 we can, therefore, calculate easily any part of the liquidus curve [7*(А), E] 
starting from the point 7*(А) and practically also total curve of monovariant 
equilibrium [T^Bi/Bz), e]. 

Determination of the course of liquidus curve in the vicinity of the point T^Bi) 
requires an assumption on the character of the limiting solid solution which is 
formed on the basis of modification Bi[4]. The same is true for the liquidus curve in 
vicinity of the eutectic point E [5]. 

In the case of the phase diagram which is illustrated in Fig. 2 the eutectoid 
reaction is more complicated. When we remove heat from the solid solution formed 
on the basis of modification Bi which has composition and temperature of the 
eute,ctoid point e, a reversible reaction of decomposition of this solution proceeds, 
which results in the formation of pure solid phase A0,8 and of solid solution formed 
on the basis of modification B2 

B\(e) -* A°'S(M) + BS

2(N) (5) 

The symbols Bi(e), B2(N) in eqn (5) denote the limiting solid solution formed on 
the basis of modification Bi and B2 with composition and temperature of the 
point e and N, respectively (Fig. 2). 
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The equation of the curve of monovariant equilibrium (e, T") can be derived by 
application of the isothermal-isobaric AG cycle having four terms (Fig. 4) 

-LAG m AG2'1 + AG312 + AG*'3 + AG1'4 = 0 

AG2'1 = G 0 s(B 2) - GS(B2) = - AT In as(B2) 

AG3'2 = G°- S(B,) - G°- S(B2) = 4G,r(B,/B2) 

AG*'3 = GS(B,) - G0' S(B0 - RT In as(B,) 

AG1'* = GS(B2) - GS(B,) = 0 

and therefore 

RT In as(Bi) - RT In as(B2) = - AGU(BXIB2) 

After rearrangement we obtain 

fl'(Bi) AfT(B,/B2) Г 1 11 . . 
l n a s (B 2 ) R Ч7*(В./В2) T J ^ 0 ; 

Often it is possible to replace the ratio of activities on the left side of eqn (6) by 
the ratio of mole fractions of component В in the coexisting solid solutions. In 
general case it is necessary to know the functions 

a4B,)=fWB)]; *ЧВ2)=фс(В)] 

Systems forming limiting solid solutions on both sides 
with one eutectoid point 

The corresponding phase diagrams are given in Figs. 5 and 6. 
When we remove heat from the system having composition of the eutectoid point 

e (Fig. 6) the following reversible reaction takes place 

B\(e) -+ Ä8(R) + BS
2(S) (7) 

For determination of the course of liquidus curves in the vicinity of the points 
7*(А), E, and T^Bi) it is necessary to have information on character of the limiting 
solid solutions formed on the basis of component A and modification B b 

respectively. 
For the curve (e, V) (Fig. 5) eqn (2) holds. The curve (e, V) (Fig. 6) obeys the 

relationship (6). 
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г*г(в/в2) 

Fig. 5. Phase diagram of the condensed system A—Bt (B2) with solid solutions on both sides and having 
one simple eutectoid point. 
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Fig. 6. Phase diagram of the condensed system A—Bi (B2) with solid solutions on both sides and with 
one eutectoid point. 

Systems forming limiting solid solutions on both sides 
and having two eutectoid points 

The phase diagrams of the systems of this type are illustrated in Figs. 7 and 8. 
For these systems the same rules are valid as for those given in Figs. 5 and 6. From 
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the point of view of information which can be obtained from knowledge of a phase 
diagram the system presented in Fig. 7 is especially useful. If we determine 
experimentally the temperatures Т*Г(А1/А2) and ^(Bi/Ife) and coordinates of the 
simple eutectoid points Ei and e2 we can calculate the enthalpies of polymorphic 

ПВ-. 
T\A,) 

TUlA^/A2) 

\ ^ ^ E / ^ у / 

*-* / \ / 

\ / e 1 
4lllÍLUlLUii-Li-LJ-L-ujj-

r^CB/Bj) 

A В 

Fi£. 7. Phase diagram of the condensed system A, (A2)—B, (B2) with solid solutions formed on the 
basis of high temperature polymorphic modifications on both sides of the diagram. There are two simple 

eutectoid points in the subsolidus region. 
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Fig. Ä. Phase diagram of the condensed system Ai (A2)—Bi (B2) with solid solutions on both sides and 
with two eutectoid points in the subsolidus region. 
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transitions AH"(Ai/A2) and Afirr(Bi/B2). Oppositely, if we know these values we 
can determine positions of the points 6i and e2. 

2. Both eutectoid and peritectoid reactions take place 
in the systems 

The main types of phase diagrams of the corresponding systems are given in 
Figs. 9—14. In the case which is illustrated in Fig. 9 the temperature Tr(Bi/B2) 
decreases with addition of substance A. Existence of the eutectoid point is the 
result of this decrease in temperature. However, the temperature of transition 

Fig. 9. Phase diagram of the condensed system A—Bi (B2, B3) with solid solutions on both sides. In the 
subsolidus region there are one eutectoid and one peritectoid points; Г(я) < T(e). 

Fig. 10. Phase diagram of the condensed system A—Bi (B2, B3) with solid solutions on both sides. 
There are one peritectoid and one eutectoid points in the subsolidus region; T(n) < T(E). 
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T ^ A / A J ) 

Fig. 11. Phase diagram of the condensed system Ai (A2)—Bi (B2, B3). Limiting solid solutions are 
formed on the basis of the polymorphic modifications A,, B b and B2. There are one pentectoid and two 

simple eutectoid points in the subsolidus region. 

г*г(в/в2) 

Fig. 12. Phase diagram of the condensed system A—Bi (B2) with limiting solid solutions formed on the 
basis of component A and the high temperature modification B b There are one peritectic and one 

simple eutectoid points in the phase diagram. 

Г^Вг/Вз) is increased by an addition of substance A, which results in occurrence 
of the peritectoid point я. 

When we remove heat from the system then at temperatures T(e) and Г(я) the 
following reversible nonvariant reactions take place 

В5(е)-*А8(М) + В2(1<) 

ÄS(Q) + B8
2(rc) ^ В з ( и ) 

Cbem. zvesti 36(5) 577—587 (1982) 

(8) 

(9) 

585 



I. K O S T E N S K A , M . M A L I N O V S K Ý 

r\) 

T*\/A2) 

Ä? / 

J e 

ч N ^ / ^ 

S* ii 

Äs • BS 
A 2 - 2 

Í1* 
\ §2 

riBj 

Т*Г{В)/В2) 

Fig. 13. Phase diagram of the condensed system Ai (A2)—Вг (B2) with limiting solid solutions on both 
sides. There are one eutectoid and one peritectoid points in the subsolidus region. 
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FJ^. Í4. Phase diagram of the condensed system At (A2, A3, A4)—В with one-side solid solutions 
formed on the basis of all modifications of component A. There are one eutectoid and two peritectoid 

points in the subsolidus region; Г(я2) < 7ХЯ») < ^Xe)-

In this connection it should be mentioned that we may find in literature inconsistent 
or even wrong description of points at peritectic equilibria. E.g. in the well-known 
monograph by Anosov et al. [6] the figure X.ll . (p. 133) of a system A—В shows 
that an addition of substance A increases the temperature Т^В^Вг). The three 
points corresponding to peritectoid isotherm are denoted here as D—P—D', 
P being the peritectoid point. (It corresponds to the point U in Fig. 9 in this paper.) 
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This inaccuracy is repeated in the text on page 134 where the quoted figure is 
described. 

The systems illustrated in Figs. 9—11 obey the same rules as the diagrams 
described in former paragraphs of this paper. The simplest case is the calculation of 
the course of monovariant curves [Tr(Ai/A2), ei] and [Т^Вг/Вз), e2] for the 
system given in Fig. 11. We shall give some examples of the systems of this type. 
According to Scarpa [7] the system KCl—КОН is of the type illustrated in Fig. 12. 
Phase diagram of the system PbW04—PbS04 which was studied by Jaeger and 
Germs [8] corresponds to the type given in Fig. 13. And finally, the system 
NH4NO3—(NH4)2S04 measured by Nikonova and Bergman [9] belongs to the 
type presented in Fig. 14. 
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