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This paper is concerned with an analysis of four models of a one-component 
sorption in a single adsorbent particle under the isothermal process assump­
tion. The transients of average values of dimensionless adsorbate concentration 
in particle have been calculated numerically by the orthogonal collocation 
method in connection with the Runge—Kurta—Merson technique for various 
values of model parameters. Some interesting features of the orthogonal 
collocation solutions are presented in this paper. 

В статье описывается анализ четырех моделей однокомпонентной 
сорбции в одной частице адсорбента при изотермических условиях. Рас­
считались временные зависимости средней безразмерной концентрации 
адсорбированного вещества в частице методом ортогональной колокации 
вместе с методом Рунге-Кутта-Мерсона для различных значений пара­
метров моделей. В статье приводятся некоторые интересные варианты 
решения методом ортогональной колокации. 

A detailed analysis of a nonisothermal one-component sorption in a single 
adsorbent particle is a necessary preliminary step if the adsorber model is to be 
refined. The adsorbent pellets dominate the dynamic behaviour of the packed bed 
adsorber with gas medium. In this paper we will in some detail consider the 
isothermal problem. The assumption of isothermal behaviour is a fair approxima­
tion when the adsorbable component is weakly adsorbed or present only in a very 
low concentration but in practice one is often concerned with the sorption of 
strongly adsorbed species at sufficiently high concentration for thermal effect to be 
important. However, some of the isothermal models can be tractable by analytical 
methods and we can obtain useful information from both simplified and linear 
versions of the more complicated nonlinear models. 
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Mathematical models 

In the next text we shall visualize the adsorbent particle as a porous solid with 
twisting pores of different diameter and length, with crevices, dead end pores, and 
perhaps a micropore system imbedded in a system of larger pores. These large 
pores serve as main passages for the fluid adsorptive that penetrates the solid and 
catches on the pore walls. 

The basic model (mass balance) for an isothermal one-component sorption in 
a single spherical adsorbent particle may be formally derived from the differential 
mass balance for the adsorbable component in a dilute binary mixture by dropping 
the convective term [1] 

^ = Чэ? + *э^Гэ7 ( i ) 

The effective diff usivity Def, which is considered to be constant, is a very composite 
property that reflects various transport mechanisms inside the complex pore 
structure. The initial and boundary conditions are 

а = * atO^x^R for/ = 0 (2) 
с = с? 

| í = 0 atjt = 0 forŕ>0 (3) 
Эх 

f ^ T T Í O , - ^ * ) atx = R fort>0 (4) 
OX Ucf 

Ch is the property of the bulk fluid phase, hM is the mass transfer coefficient for the 
film that surrounds the pellets. For a general equilibrium isotherm а = а(с), eqn 
(1) may be rewritten as 

dc _ /d2c , 2 дс\ Эадс 
£^гНэ7^хд-х)-Э-сЭ1 (5) 

Eqn (5) is seen to be a nonlinear parabolic partial differential equation, which is 
coupled to the fluid phase mass balance through the boundary condition (4), cb 

being in general the function of position in the adsorber and of time. For our 
purposes we shall regard it as the known constant value of cb = c0. 

Eqns (2—5) are rendered dimensionless by the following substitutions [1] 

а - üi - с-с* Со-с* Ar/ 
а%-ах Со-с? а%-а{ R 

. «.-«OL х-. h * (6) 

О — z g — -рг гНьл — ~^z— аъ — а\ R Def 
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The initial and boundary conditions are 

4 = 0 

0 Э т г ~ 1 э | 2 + £ Э £ / ЭОЭт ( 7 ) 

о = 0 a t O ^ ^ l forr = 0 (5) 

§ f = 0 a t£ = 0 f o r r = 0 (9) 

дУ=В/м(1-О г=.) at ^ = 1 f o r r > 0 (/0) 

For the Langmuir isotherm 

а=а>ТТк-р <"> 

and using transformations (6) and transformation 

we obtain 

* i = ( Í 2 ) 

q = l-«(l-Q) ( / 5 ) 

A simplification of this model is possible for the situation, in which the transfer 
coefficient for the film is large. It is equivalent to small changes in driving force 
across the film. Boundary condition (10) for large BiM has the form 

Qs=1 = l a t £ = l for r^O (14) 

Another simplification of the model is possible for a case of "weak" sorption, when 
linear equilibrium isotherm can be applicable. In this case xx = 0 and the model 
equations are linear. In Table 1 are listed mathematical formulations of four 

Model 

11 
12 
13 
14 

Table 1 

Mathematical formulation of four isothermal models 

Model equation 

дт дт 

Equilibrium isotherm 

* , * 0 

к, =0 
* , = 0 

Boundary condition 

V Q ( 1 ) = B / M ( 1 - Q ( 1 ) ) 

0(1) = 1 
VO(l) = B/M(l-Q(l)) 

0(1) = 1 
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different models describing the "isothermal" sorption process. In model II it is 
assumed that intraparticle and film resistances against mass transport exist and that 
the equilibrium isotherm is nonlinear. In model 12 it is assumed that only the 
transport resistance in the particle is important. Models 13 and 14 are analogous but 
the equilibrium isotherm is linear, i.e. xx = 0. These two models are linear and are 
tractable by analytical methods. It is also possible to create further two models, in 
which only the film resistance against mass transport is included. These models are 
not interesting from the point of view of this work and we will not consider them. 

Analysis of the isothermal models 

The simplest linear models 13 and 14 are analytically treated in detail in papers 
[2, 3]. Models II and 12 are nonlinear and must be solved numerically. Weisz and 
Hicks [4] solved model 12 numerically. They presented a verification for the 
existence of only a limited range of sorption—diffusion behaviour. The first 
limiting case is one of "weak" sorption, i.e. of a linear isotherm — model 14. The 
second limiting case of "strong" sorption is the so-called shell- or zone-progressive 
process of sorption with the assumption of a quasi steady state for the concentra­
tion gradient between active shell and outer boundary. Various empirical rate 
equations giving the rate of the mean internal concentration change as a function of 
a linear or quadratic driving force were published in papers [5—8]. Equivalent 
relationship for nonconstant diffusivity has been developed in [9]. Some other 
models can be found in papers [10—12] and all these are discussed in detail in [13]. 
Analytical solution of models 13 and 14 is well known [2, 3]. Time dependence of 
mean internal concentration Q for model 13 is 

and for model 14 

Ó=l-JäS-pexp(-*Vť) (U) 

ň-л r. Y В&ехр(-$т') (16Л 

where ť = т/(1 4- 6) and ßk are the roots of 

ßkcotgßk + BiM-l=0 (17) 

Solution and computing methods 

In the present work the method of orthogonal collocation has been used for the 
solution of И—14 in connection with the Runge—Kutta—Merson technique to 
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solve the resulting ordinary differential equations. Orthogonal collocation is one of 
several Methods of Weighted Residuals. The differential equation is satisfied in N 
predetermined points of the variation interval of the independent variable if. A 
very efficient collocation method results when these collocation points are chosen 
as zeroes of certain orthogonal polynomials, the so-called Jacobi polynomials. The 
considered problem is symmetrical about ? = 0 so that an even set of Jacobi 
polynomials can be used. Gradient VQ and Laplace operator V2Q are found as 
weighted average of the values of the dependent variable at all collocation points 
and at the pellet surface 

N+l 

V < ? ( / ) = 2 > ( / , J ) Q ( J ) (18) 
J=] 

V 2 Q ( J ) = 2 B ( / , J ) Q ( J ) (19) 
J=\ 

Matrices A and В are dependent only on the chosen polynomials and can be found 
once for all. By choosing a suitable weighting function for the Jacobi polynomials it 
is possible to fix the zeroes at points where it is important to obtain an accurate 
solution. The weighting function is generally in the form (1 - £2)a£f2/J Villadsen 
and Michelsen discussed in [14] various weighting functions for solving the 
effectiveness factor problem with boundary condition (10) and presented BiM 

— dependent optimal collocation. However, for N greater than 1 or 2, this method 
is not significantly better than the standard method with а = 0, ß = 1/2 for sphere 
geometry. For our purposes it is important to study the transient of the mean 
internal concentration Q or q defined as the integral of the Q solution over the 
volume of the particle. 

0 = Ы 0^)dV=3^Q(^d^ (20) 

Integral (20) can be calculated via the summation formula of the Radau 
quadrature 

Q=2W(ľ)Q(ľ) (21) 

Model equations can be transformed, by using formulas (18) and (19), into a set of 
N ordinary differential equations for N internal collocation points 

t W ^ = 2 W J ) 0 ( J ) /=1,ЛГ (22) 

where 
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The boundary condition (10) is transformed into 
N+l 

2,A(N+l,J)Q(J) = BiM(l-Q(N+l)) f o r r > 0 (24) 
7=1 

and the boundary condition (14) is 

Q(N+1) = 1 forr^O (25) 

The initial condition (8) is 

Q(/) = 0 forr = 0 1 = 1 , ..., N (26) 

Models II and 13 are described by the set of N equations (22) and by eqn (24) for 
7V+ 1 unknown О values. Usually it is simpler to eliminate the unknown boundary 
ordinate from the system of equations 

N+l 

2>(N+1,/)Q(J) Шм 

0 ( ^ + 1 ) = " в / м + А ( д г + 1 , л г + 1 ) + В1М + А(АГ+1,ЛГ+1) ( 2 7 ) 

Eqn (27) is inserted into each of the N collocation equations (22) and a system of 
N equations for N interior Q values is obtained 

4 ^ = C Q + d (28) 
dr 

with the initial condition 
Q = 0 at т = 0 (29) 

where f is the diagonal matrix of functions f(i), Q is the column vector of 
dimensionless concentrations (?(/), С is the Nx N matrix with the elements of 

C(I J) = B(I n _ g ( / , N + l ) A ( A r + l , J ) 

and d is the column vector with the elements of 

B(/,N+1)B/ M 

* M ; Bk + i4(AM-l,N+l) l ; 

Models 12 and 14 are simpler with boundary condition (25). The set of N equations 
in matrix notation is similar to formula (28), but with the elements of С and d 
slightly different from the corresponding elements in eqns (30) and (31) 

C(I,J) = B(I,J) 
У ' V ' (32) 
d(T) = B(I,N+l) 

Elements A(I, J), B(I, J), W(ľ) were computed by programs listed in [14]. The 
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set of ordinary differential equations was integrated by the Runge—Kutta—Mer-
son method with a variable step size, adjustment being made by calculating the 
truncation error. 

Results and discussion 

Figs. 1—4 graphically compare the collocation solution with the corresponding 
exact solution of 13 and 14 and that of И and 12 with the collocation solution for 
N = 2 5 . Fig. 1 presents the collocation approximations of 14 together with the exact 
solution (15) for N= 1, 2, 3. Some dependence of average value of dimensionless 
sorbate concentration q is drawn against the root of dimensionless time. Fig. 1 
shows the effect of the increasing number of collocation points on the precision of 
the collocation approximation. Fig. 2 shows the effect of various values of 
parameter BiM on the approximations of 13 solution (16) for N = 1 and BiM = 
1.100. In all these cases the errors of collocation solution have a maximum for 
r = 0, but the error decreases with increasing N and decreasing BiM. From fcqns 
(21) and (27) it follows that for т = 0 

1.0 

o.a 

0.6 

0.4 

0.2 

0.0 
0.0 0.2 0.4 0.6 0.8 i f 1.0 

Fig. 1. Collocation approximation of model 14. 
Exact solution; collocation solutions for N= 1,2,3. 
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Fig. 2. Collocation approximation of model 13 for various BiM. 
Exact solution; collocation solution for N= 1. 

1,2. BiM= 1 ;3,4. BiM= 100. 
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Fig. 3. Collocation approximation of model 12 for various *,. 
— Exact solution (N= 25); collocation solution for N= 1. 

l,2.xl=0;3,4.xl=0.9. 
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1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 if 

Fig. 4. Transients of q for model II. 
1. BiM = 1000, xi = 0.908; 2. BiM = 1000, *, = 0.0; 3. BiM = 1, *, = 0.908; 4. BiM = 1, *, = 0.0. 

For large BiM (BiM—>°°) and т = 0 

Q=W(N+1) 

and for small Вы (Вы-^>0) and r = 0 

0 = 0 

Fig. 3 presents the effect of nonlinearity of the adsorption isotherm on the 
precision of collocation solution for 12. The dependence of the average value of 
dimensionless sorbate concentration q is drawn against Vr for xx = 0 and 0.9 for 
iV= 1 along the precise solution curve for iV=25. From Fig. 3 it is seen that for 
linear isotherm *i = 0 the precision of collocation solution for small N is better. 
Fig. 4 shows the transients of q for II for various values of X\ and BiM and N = 8 . 
From Fig. 4 it is obvious that there exists a large range of the saturation time 
q = 0.99 depending on the parameters of models. 

Conclusion 

Computation results showed that the method of orthogonal collocation is 
suitable for solving this type of equations. The accuracy of collocation solution 
increases rapidly with the increasing number of collocation points N and also with 
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increasing time. For the first rapid steps of adsorption process 8 collocation points 
are needed, but further a smaller number of points N=2,3 is satisfactory. The 
decrease of values X\ and Вы has also favourable influence on the accuracy of 
collocation solution. In all models the approximation error for r = 0 has 
a maximum value. In general, the approximations of collocation solution are better 
for a less rapid process, when the concentration profiles in the particle are not very 
steep. The most general isothermal model is И and it is applicable in all cases of 
isothermal adsorption discussed in this text. In the next paper the application of the 
orthogonal collocation method will be reported for solving nonisothermal sorption 
models. 

Symbols 

a 
a* 
a* 

at 
A(I,J) 
A 

B(I,J) 
В 
BiM 

с 

Cb 

с! 
Cx-R 

Co 

C(IJ) 
С 
d(l) 
d 

A, 
'О) 
f 
AM 

К 
N 
P 
q 
0 ^ = 0(1) = 
Q 

adsorbate concentration in particle 
initial adsorbate concentration in particle 
monolayer capacity in the Langmuir isotherm 
equilibrium adsorbate concentration 
differentiation weight from eqn (18) 
(N+1) x (N+1) matrix of A(I, J) elements 
differentiation weight from eqn (19) 
(7V+1) x (ЛГ+1) matrix of B(If J) elements 
Biot number for mass transfer 
adsorptive concentration in the gaseous phase 
adsorptive concentration in the bulk flow 
equilibrium initial adsorptive concentration 
adsorptive concentration at the particle surface 
constant adsorptive concentration in the bulk flow 
matrix elements defined by eqns (30) or (32) 
NxN matrix with C(I, J) elements 
vector elements defined by eqns (31) or (32) 
column vector with d(I) elements 
effective diffusivity 
function defined by eqn (23) 
diagonal matrix of functions 1(1) 
film mass transfer coefficient 
equilibrium parameter in the Langmuir equation 
number of internal collocation points 
partial pressure of adsorptive 
dimensionless adsorbate concentration in particle 

= Q(N+1) dimensionless concentration at the particle surface 
average dimensionless adsorptive concentration 
defined by eqns (20) or (21) 
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mol m-3 
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O(i) 

Q 
R 

t 
V 

Щ1) 
x 

a,ß 
ß* 
ô 
e 
* i 

4 
X 

dimensionless concentration at 7-th 
collocation point 
column vector with Q(T) elements 
radius of particle 
time 
volume of particle 
Radau quadrature weight from eqn (21) 
space coordinate 
weight parameters for Jacobi polynomials 
k-Xh root of eqn (17) 
dimensionless parameter defined by eqn (6) 
porosity of particle 
dimensionless parameter defined by eqn (12) 
dimensionless space coordinate 
dimensionless time 
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