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Cryometry on the basis of binary eutectic mixture as a method for determi-
nation of partial molar enthalpies of fusion and partial molar enthalpies of
mixing of components of the binary mixture is discussed. The relationships for
cryometry on the basis of binary eutectic mixture are derived and it is pointed
out that cryometry can be carried out also in the systems forming solid
solutions. Conditions for correctness of cryometry in ternary systems are
analyzed. From this thermodynamic analysis it follows that in ideal systems
cryometry on the basis of binary eutectic mixture can be carried out successful-
ly providing the molar enthalpies of fusion of the components of the binary
mixture equal. However, from numerical examples it follows that even if the
conditions for correctness of the cryometric method are not strictly fulfilled
accuracy of the determination of the enthalpy of fusion of eutectic mixture
from cryometric data may be influenced only negligibly.

O6cyxnaeTcs BO3MOXHOCTb UCIIOJIb30BAHHS Ki)HOMeTpPlH Ha OcHOBe OMHap-
HOM 3BTEKTUYECKON CMECH B Ka4eCTBe METOJIa [i/1sl OonpeJielieH!s napLuuanbHbIX
MOJIbHBIX JHTANBMUHA TUIAaBIEHHS W MNapUMaIbHBIX MOJBHBIX 3JHTANLIUI
CMeLIeHUS! KOMIOHEHTOB OMHapHOH cMecH. BbIBefeHbI COOTHOILEHUS s
KPHOMETpHM Ha OCHOBe GHHApHOW IBTEKTHYECKOH CMeCH M OTMeYeHO, YTO
KPHOMETPHS MOXeT ObITh NPOBEfleHa TaKxXe B CHCTeMax, 06pa3youInx TBep-
Ible pacTBOPbI. AHATU3UPYIOTCS YCIOBUS IPUMEHUMOCTH KPUOMETPUH B TPOIi-
HbIX cucTeMax. M3 npoBeeHHOro TepMOIUHAMUYECKOTO aHaln3a ClefyeT, YTO
B MAcalbHbIX CUCTEMax MOXET ObIThb YCNMELIHO MpOBeieHa KPHOMETPHS Ha
OCHOBe GMHApHOH 3BTEKTUYECKOH CMeCH, B Cllyyae eCliH BeJMYUHBI MOJIbHBIX
JHTANBMUA NMNaBIEeHUs KOMOOHEHTOB GMHapHOM cMec ofuHakoBbl. OgHako,
MCXOMsl W3 YHCIEHHDBIX IPUMEPOB Clle[lyeT, YTO AaXe B clyyae He aGCONIOTHO
CTPOroro BbIMOJIHEHHS YCIOBHH MPUMEHUMOCTH KPHOMETPHYECKOTO METOfA,
TOYHOCTb ONpefeseHHs] IHTANbNHUHA NAaBIeHUs IBTEKTHYECKOM.CMECH Ha OcC-
HOBE KDHOMETPMYECKMX [aHHLIX MOABEpXeHa JHULIL MpeHeGpexXUTENbHO
MaJloMy BIHMSHHUIO.

As it follows from a number of publications and monographs [1, 2] cryometry is
one of the very important theoretical-experimental methods for investigation of

Chem. Papers 40 (2) 187—200 (1986) 187



J. GABCOVA, M. MALINOVSKY

equilibria in condensed systems. The monograph by Petit [2] is devoted specially to
molten systems. If the investigated system fulfils certain conditions cryometric
method allows to obtain the value of the enthalpy of fusion of the component A in
the system A—B and it provides us with important information on the mechanism
of thermal dissociation of complex anions [3]. It has been proved that cryometry
can be carried out also on the basis of a complex compound with nonzero degree of
thermal dissociation [4].

Recently the cryometric method has been applied also to the ternary systems. In
this case the third component C is added to the binary eutectic mixture A + B.
From the analogy with classical cryometric method it follows that we can obtain in
this way the value of the molar enthalpy of fusion of the eutectic mixture of the
substances A + B. If we denote this quantity as AH(fus, A + B, E) it holds

AH(fus, A+ B, E)=x(A, E)- AH(A, (1, E/s°)) +
+x(B, E)- AH(B, (1, E/s%) (1)

where x(A, E), x(B, E) are the concentration coordinates of the eutectic point E in
the system A—B; x(A, E)+x(B, E)=1. AH(i, (1, E/s°)) are the partial molar
enthalpies of fusion of the components A and B at the eutectic point E. These
partial molar enthalpies of fusion occur also in the relationship which has been
derived by Dodé and Hagége [5]

x(A,E)- AH(l, E/s°) - k(A, E)=x(B, E)- AH(l, E/s°) - k(B, E) 2)

where k(A, E), k(B, E) are the slopes of tangents to the liquidus curves of the
components A and B at the eutectic point E. (A simple eutectic system A—B is
assumed.)

If we know the quantity AH(fus, A + B, E) and the slopes k(A, E), k(B, E) we
can calculate the partial molar enthalpies of fusion AH(i, (1, E/s°)) as well as the
partial molar enthalpies of mixing AH(i, (1, E/I°), mix) at the point E [6]. The
relationship (2) has been used in a simplified form for the verifying principal
correctness of the experimental phase diagrams [7, 8].

While the theoretical background of cryometry in binary systems has been
derived in about 1900 the theory of cryometry in ternary systems has been
published by Férland only in 1964 [9]. Férland discussed the case when one
molecule of the third component brings only one new species in the eutectic
mixture. In this case the addition of the third substance MC (its mole fraction is
denoted x(MC)) decreases the temperature of liquidus of the eutectic mixture
AC+ BC according to the relationship

dT(AC+BC) _ RTT(E) 3)
dx(MC) ~ AH(fus, AC+BC, E)
In the limit for x(MC) — 0 it holds
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T daT R(T(E))? (4)
£(MC)—0 dX(MC) - AH(fUS, AC+BC, E)

Let us consider the binary system A—B in which each molecule of the substance
B brings in the pure substance A just one new species. We assume that the
substance B does not form solid solution in A. Then for the limit temperature
gradient of the liquidus of component A it holds

dT(A) _R(T(fus, A))?

,31'2,, dx(A) ~ AH(fus, A) (5)
Because x(A)+ x(B)=1 and dx(A)= —dx(B) we obtain
. dT(A) _  R(T(fus, A))*
o, dx(A) -~ AH(fus, A) (6)

It follows that there is a formal identity between the relationships (4) and (6).

In 1969 Haase and Schonert [10] derived in a very precise way the basic
relationship for cryometry in ternary systems. Their relationship holds generally,
i.e. also in the case when molecule of the third component C brings in the eutectic
mixture A+ B “k” new (foreign) species. It holds

i AT ___ R(TE)
x(C)—0 x(C) AH(fUS, A+B, E)

k (7)

Because AT=T(E)— T, dAT= —dT and by differentiation of the left-hand side
of eqn (7) we obtain

lim dT _ R(T(E))? '

x(C)—0 dx(C) - AH(fus, A+B, E)

k (8)

Thus the relationship derived by Férland (4) is a special case of the relationship (8)
for k=1.

In 1974 Fellner and Matiasovsky [11] derived the basic relationship for
cryometry in ternary systems in different way. They made two simplifying
assumptions:

i) the system is ideal (i.e. a(i) = x(i)),

i) AH(fus, A, B)#f(T).

Authors of the cited paper [11] point out that the condition for correctness of
cryometry given by Férland, viz. that the curve of monovariant equilibrium starting
at the point E must, at least in the vicinity of point E, go towards the vertex
C (Fig. 1)_is fulfilled for ideal systems only when AH(fus, A)= AH(fus, B).
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Fig. 1. Cryometry in a ternary system on the
basis of the binary system AC—BC.
MC AC Cross-hatched area contains no solid solutions.

A new method of derivation of the basic cryometric relationship

Gibbs—Duhem equation for the ternary system at constant T, p reads
x(A)-dG(A)+x(B)-dG(B)+x(C)-dG(C)=0 (9)
It holds
x(A)+x(B)+x(C)=1

Because G(i)= G°i)+ RT In a(i) we get after rearrangement

x(A)-dIna(A)+x(B)-dIna(B)=—x(C)-dIn a(C) (10)
Differential form of the Le Chatelier—Shreder equation is
. AH(i, 1°/5%
dIn a(l)——RT2 dT (11)
We can insert the right-hand side of this equation for i=A, B into eqn (10)
AH(A, 1I°/s°) . AH(B, I/s%) ... '
x(A) —RTT dT + x(B) R dT=-x(C)-dIna(C) (12)

Dependence of the activity of component C on concentration can be expressed by
the universal relationship (12). Then we obtain

dx(C) _
x(C)
where k is the number of new (foreign) species which one molecule of component

C brings into the mixture A + B. Inserting from eqn (13) to eqn (12) we get after
rearrangement

—x(C)-dIn(x(C))k=—-x(C)- k

-k -dx(C) (13)
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e RT
~x(A)- AH(A, I/5°) + x(B) - AH(B, I9s°)

In the limit for x(C)—0, T— T(E), x(A)—x(A, E), x(B) > x—(B, E), AH(i, 1°/
/s°)— AH(i, E, 1°/s°) and it holds

d

-k - dx(C) (14)

im 9T _ R(T(E))®
«-0dx(C) ~  x(A,E)- AH(A, E, 15°) + x(B, E) - AH(B, E, I/5°)
When

x(A, E)- AH(A, E, 1°5°) + x(B, E) - AH(B, E, I’s°) = AH(fus, A + B, E)

-k (15)

the derived relationship (15) is identical with the relationship (8) derived by Haase
and Schénert [10]. A
Another possibility of derivation of the basic relationship for cryometry in
ternary systems is based on the application of the isothermal-isobaric AGr. , cycle.
Conditions for phase equilibria A(1)2A(s°) (points E and E,) and B(1)2B(s°)
(points E and E,) at T, p = const (Fig. 2) are fulfilled if

G(A,1)=G(A,s); G(B,1)=G(B,s)

T(fus, BC)
T(tus, MC)?
E2
T(fus, AC)
E
BC
E
x(AC) 1
_ =" xMc)
i - x(BC)
— -
MC AC

Fig. 2. Scheme for derivation of the relations for cryometric method in ternary systems.
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If we multiply the first condition by x(A, E) and the second by x(B, E) and add
both terms we obtain

x(A,E)- G(A,)+x(B,E)- G(B,)=x(A,E)- G(A, s°) +
+x(B, E) - G(B, s° (16)

Let us consider equilibrium at points Z and Z, (Fig. 2). In this case the components
A, B in liquid phase composed of components A + B+ C are in equilibrium with
pure solid components A(s’) and B(s?). We may choose as standard state an
undercooled (T < T(E)) eutectic liquid solution of composition x(A, E) + x(B, E).
Then for the four-term AGr,, cycle (Figs. 3a, 3b) it follows

x(AC) - ACII, E) + xiac) -ac® «  x(A) -GlA, L, E)+ x(a) - ga, O)+
+ x(BC) - BC(1, E) +xig0) -get®)  +x(B) -G8, 1, E) +x(8)-6(8, )
3 2 3 2
(7. p] (T pl
4 1 4 1
X(AC) - ACIL) + (AC) -ACI) +  x(A)-GlaA, U+ x(A) - GlA, )+
+ x(BC) - BC() «xic) -BC() .+ x(B) - (B, 1 +x(B) - 6B, )

Fig. 3a. The isobaric-isothermal cycle. Fig. 3b. The isobaric-isothermal AG-cycle.

SAG=AG(2/1)+AG(3/2)+AG(4/3)+ AG(1/4)=0
AG(2/1)=x(A,E) (G(A,1°9 - G(A,s°)) + x(B, E) (G(B, I°) -
- G(B,s%)=x(A, E)- AG(A, I°5°) + x(B, E) - AG(B, 1°5°)
AG(3/2)=x(A, E)- AG(A, (1, E)/I°) + x(B, E) - AG(B, (1, E)/I°)

Index “l, E” denotes the undercooled liquid phase corresponding to composition of
the point E.

AG(4/3)=x(A,E)- AG(A,1/(1, E))+ x(B, E)- AG(B, 1K1, E))
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Because AG(1/4)=0 (as a result of phase equilibrium) we obtain inserting into
expression for ZAG the equation
x(A,E)-AG(A,1/(1,E))+x(B,E)- AG(B, l/(1, E)) =
= —[x(A, E)- AG(A, (1, E)/s°) + x(B, E) - AG(B, (1, E)/s°)] (17)
The term on the right-hand side of eqn (17) corresponds to the negative change in
Gibbs energy of the process when 1 mol of mixture having composition x(A, E),
x(B, E) melts and pure solid phases form liquid binary solution A(l, E)+ B(l, E);

x(A, E)+ x(B, E) = 1. Therefore the right-hand side of eqn (17) can be denoted as
AG(fus, A + B, E). It holds

AG(fus, A+ B, E)=AH(fus, A+B, E)— T AS(fus, A+ B, E)
and because
AS(fus, A+ B, E)=AH(fus, A+ B, E)/T(E)
we may further write
x(A, E)-AG(A,1/(1,E))+x(B, E)- AG(B, l/(1, E))=

T
= — AH(fus, A +B, E)(l——T—@> (18)
Because the quantities x(A, E), x(B, E), AH(fus, A+ B, E), T(E) are constants
derivation of eqn (18) according to x(C) gives'

dAG(A, I/(1, E))
dx(C)

_ AH(fus, A+B,E) _dT
= (E) ax(©) (19)

Now we insert in the Gibbs—Duhem equation (10) for d In a(i), (i=A, B), the
expression dAG (i, 1/(l, E))/RT which can be obtained by derivation of the identity
RT Ina(i,1)=G(i, 1) - G(, (1, E)) =AG(, I/(1, E)).

After multiplying by the term RT/dx(C) and rearrangement we obtain

dAG(B, 1/(1, E)) _
dx(C) -

x(A, E) +x(B, E)

dAG(A, 1/(1, E))
*A) 50
Let a(C) = (x(C))%, thend In a(C)=d In (x(C))* = k -dx(C)/x(C) and after insert-
ing to eqn (20) we obtain

dAG(l/(1, E))
dx(C)

+x(B) dAGgE’('ég" E)- _RTx(C)-dna(C) (20)

+x(B) dAGfE'(gg'* E)_Rr-& (21)

x(A)
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When x(C)—0, x(A)— x(A, E), x(B)— x(B, E) and it holds

i AH(fus, A+ B, E) - dT
2(C)=0 T(E) dx(C) -

— RT(E) - k

or

lim dT _ _ R(T(E))* .
«0)—0 dx(C) AH(fus, A+B, E)
Thus we obtained again eqn (8).

Finally it should be pointed out that a successfull realization of the cryometric
method in ternary systems is not limited only to the systems with simple eutectic as
it is stated in papers [9—11]. It is sufficient if the system A—B has a simple eutectic
character and if no solid solutions are formed in the near vicinity of the curve of
monovariant equilibrium starting at the point E.

Fellner and Matiasovsky [11] found that in ideal systems the cryometry in the
ternary systems can be correctly realized only if AH(fus, A)=AH(fus, B). This
condition is too strict and it would mean a remarkable complication of the
cryometric method. We try to eliminate these restrictions. The temperature
dependence of the quantity AC,(i) will be taken into account by employing the
differential form of the Le Chatelier—Shreder equation

AH(G, /%)
Rz 4T

where AH(i, 1°/s°) = H(i, 1°) — H(i, s°) is the molar enthalpy corresponding to the
phase transition ‘‘solidus—liquidus” of the pure i-th component at the temperature
T. For a(i) = x(i) it follows from eqn (23)

dx(i) _AH(, s
x(i) ~  RT?

For the dx(A)/dx(B) we readily obtain
dx(A) x(A) AH(A, I/s)

k (22)

dlna(i)= (23)

dIn 2= Var (24)

dx(B) ~ x(B) AH(B, /s9) (23)
Because x(A), x(B), and x(C) are the mole fractions it holds
dx(C)= —dx(B)—dx(A)
and thus
dx(C)_ _, _dx(A) -

dx(B) dx(B)
After introducing from eqn (25) into eqn (26) we obtain
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dx(C)_ | _x(A)-AH(A,I’Is")
dx(B) x(B)-AH(B, 1°/5%)

and in the limit for x(C)—0

i 9%(O)_ _ | _x(AE) AH(A, E, I's")

o dx(B) x(B, E)- AH(B, E, I'/s°) {27)

The index “E” at the quantities in eqn (27) denotes that these quantities are
related to the eutectic point E in a simple binary system A—B (Fig. 4).
For the equation of the line passing through the points C and E (Fig. 5) it holds

clo, )
C
|
|
|
|
|
|
|
|
|
|
|
II Alo; 0) E 8(1, 0
A E B x(B, E) \
Fig. 4. Cryometry in a ternary system based Fig. 5. The straight line connecting the points
on the binary system A—B. CandE.
x(C)= - (C E) x(B)+1 (28)
and further
dx(C) _ 1
li 29
o, dx(B)  *(B.E) (29
Comparing eqns (27) and (29) we obtain that
__1___,_x(AE) AH(s) (30)
x(B.E) x(B, E) - AH(I/s) -
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Because x(A, E) + x(B, E) =1 we can readily prove that eqn (30) is fulfilled only
when

AH(A, E, 195°) = AH(B, E, 1°/s°) (31)

Eqn (31) is therefore a more precise condition for correctness of the cryometric
method in the ternary systems with respect to the first limitation.
For nonideal systems it holds

dIna(i)=dIn x(i)+d In y(i)
and then
dx(i) AH(, s
x(i)  RT?

Using the same procedure as above we find that it holds

D daT-dn y() (32)

I _,,x(AE) (AH(A,E, 1) dT— R(T(E))*d In y(A, E))
x(B,E) ' ' x(B,E) (AH(B, E, I/s°) dT — R(T(E))* d In y(B, E))

(33)

Thus for nonideal systems the condition AH(A, E, 1°/s°)=AH(B, E, 1°/s°) does
not hold.

In order to arrange eqn (33) in an explicit form we will assume that the activities
of components A and B may be expressed by the universal relationship [12]

a(A)=(x(A)y»
a(B) = (x(B))* (34)

where k(B/A), k(A/B) equal the number of new (foreign) species which one
molecule of substance B brings into substance A, and vice versa. In this case
d In a(i) = k(j/i) dx(i)x(i) and it holds

I _,,*(AE) AH(A, E, I5%) - k(A/B) (35)
x(B, E) x(B, E)- AH(B, E, I/s°) - k(B/A)

From this we obtain the condition of correctness of cryometry
AH(A,E, 1I°5° - k(A/B)=AH(B, E, 1°/s°) - k(B/A) (36)

Eqn (36) is identical with the condition derived by Fellner and MatiaSovsky not
only for k(A/B)=1, k(B/A)=1 but also for k(A/B)=k(B/A).

From the formal point of view, the original condition AH(fus, A) = AH(fus, B)
(as well as the condition given by eqn (36)) is too stringent. If it held in that
sense that a small difference between the quantities AH(fus, A) and AH(fus, B)
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(or more precisely between the terms AH(A,E,1°s° - k(A/B) and AH(B,E,1°
/s°) - k(B/A)) would lead to wrong values of the quantity AH(fus, A+ B, E) it
would mean a remarkable limitation of applicability of the cryometric method to
investigation of the ternary systems.

We estimated the influence of the deviation from the given conditions on the
quantity AH(fus, A + B, E) by means of the so-called theoretical experiment. The
following procedure was used:

i) We chose for components A and B the following values of T(fus, i) and
AH(fus, i):

T(fus, A)=1200 K, AH(fus, A)=30 000 J mol™*
T(fus, B)=900 K, 1200 K, 2000 K
AH(fus, B)=6000 J mol~*, 30 000 J mol~*, 60 000 J mol~*

ii) Using the Le Chatelier—Shreder equation we calculated the liquidus curves
of components A and B in the binary system A—B up to 500 K (i.e. also for
T(i))< T(A +B, E)). Their cross-section gives coordinates of the eutectic point
in the system A—B. The calculations were carried out under the assumptions
AH(fus, i)=AH(i, 1°5% and a(i) = x(i).

iii) Formally the values x(A)+ x(B), x(A, E) + x(B, E) give T(i)< T(A + B, E)
which is the decrease of temperature as a result of the addition of substance C. It
must hold x(A)+ x(B)+ x(C)=1.

iv) On the basis of known values of x(A), x(B), x(C) the curves of monovariant
equilibrium were constructed (Fig. 6).

v) For given x(C) we determined AT and using the cryometric method we
calculated AH(fus, A+ B, E). The data used in the calculation according to the
relationship

R(T(A +B, E))?
k()

AH(fus, A+B,E)= (37)

are summarized in Table 1.
The quantity k(I°) was determined by extrapolation of the dependence

A—%#(Ax(@)

from the condition Ax(C)—0.
vi) The values of AH(fus, A + B, E) calculated in this way were compared with
ideal enthalpy of fusion of the system A—B at the eutectic point (Table 2)

AH(A +B, E, id)=x(A) - AH(A, Is°) + x(B) - AH(B, I5°)  (38)
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The values k(1°) needed for the calculation of AH(fus, A + B, E)
T(fus, A)= 1200 K ; AH(fus, A) =30 000 J mol~"*

AH(fus. B)
J mol™!
-T(ilz& 6 000 30 000 60 000
k(1°) k(1°) k(19
900 469 190 126
1200 470 260 210
2000 450 337 346

Comparison of the values AH(A + B, id, E) with the values AH(fus, A + B, E), calculated under the
application of cryometric method

AH(fus:lB)= 6 000
J mol
T(fus, B)
K AH(fus, A+ B, E) AH(A +B,id, E) %
900 9747.4 9758.4 -0.1
1200 11 828.1 118824 -0.5
2000 14 809.8 14 625.6 1.3
AH(fus: B) _ 30 000
J mol™!
T(fus, B)
K AH(fus, A + B, E) AH(A +B,id, E) %
900 30 502.9 30 000 1.7
1200 30411.6 30 000 14
2000 30048.2 30 000 1.4
AH(fus: B) —60 000
J mol™!
T(fus, B)
K AH(fus, A + B, E) AH(A +B,id, E) %
900 48 905.8 50 820.0 -338
1200 42 362.7 41460.0 2.2
2000 328325 32 307.0 1.6

198
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From the condition given by eqn (36) it follows

AH(A, E, I5°) _k(B/A)
AH(B, E, /5% _ k(A/B)

The chosen ratio of enthalpies in examples corresponds to the ratio of correction
factors 6:1 and it includes both the ideal systems and the systems the behaviour of

E7 E3E2E‘

Fig. 6. The lines of monovariant equilibrium (of the common crystallization) of the substances A and B.

————— T(fus, B)= 900K; AH(fus, B)= 6000 J mol!
— — — — T(fus, B)= 900 K; AH(fus, B)=30 000 J mol~!
—-—+—-—-— T(fus, B)= 900 K; AH(fus, B)=60 000 J mol!
—+-—++—-+ T(fus, B)=1200K; AH(fus, B)= 6 000 J mol~!

T(fus, B)=1200 K; AH(fus, B) =30 000.J mol™!
————— T(fus, B)=1200K; AH(fus, B)=60 000 J mol~!
- ——'——— T(fus, B)=2000 K; AH(fus, B)= 6 000J mol"'
----------- T(fus, B)=2000 K; AH(fus, B)=30 000 J mol™!
—-+— T(fus, B)=2000 K; AH(fus, B)=60 000 J mol~!
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which is very far from classical ideality. The temperature dependence of the phase
transition AH(i, 1°s°) was not considered. However, this effect cannot exceed
30 % even for large temperature intervals and it is therefore included in the range

of

—

00NN W W

chosen values of AH(fus, i).
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