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Cryometry on the basis of binary eutectic mixture as a method for determi­
nation of partial molar enthalpies of fusion and partial molar enthalpies of 
mixing of components of the binary mixture is discussed. The relationships for 
cryometry on the basis of binary eutectic mixture are derived and it is pointed 
out that cryometry can be carried out also in the systems forming solid 
solutions. Conditions for correctness of cryometry in ternary systems are 
analyzed. From this thermodynamic analysis it follows that in ideal systems 
cryometry on the basis of binary eutectic mixture can be carried out successful­
ly providing the molar enthalpies of fusion of the components of the binary 
mixture equal. However, from numerical examples it follows that even if the 
conditions for correctness of the cryometric method are not strictly fulfilled 
accuracy of the determination of the enthalpy of fusion of eutectic mixture 
from cryometric data may be influenced only negligibly. 

Обсуждается возможность использования криометрии на основе бинар­
ной эвтектической смеси в качестве метода для определения парциальных 
мольных энтальпий плавления и парциальных мольных энтальпий 
смешения компонентов бинарной смеси. Выведены соотношения для 
криометрии на основе бинарной эвтектической смеси и отмечено, что 
криометрия может быть проведена также в системах, образующих твер­
дые растворы. Анализируются условия применимости криометрии в трой­
ных системах. Из проведенного термодинамического анализа следует, что 
в идеальных системах может быть успешно проведена криометрия на 
основе бинарной эвтектической смеси, в случае если величины мольных 
энтальпий плавления компонентов бинарной смеси одинаковы. Однако, 
исходя из численных примеров следует, что даже в случае не абсолютно 
строгого выполнения условий применимости криометрического метода, 
точность определения энтальпий плавления эвтектической,смеси на ос­
нове криометрических данных подвержена лишь пренебрежительно 
малому влиянию. 

As it follows from a number of publications and monographs [1,2] cryometry is 
one of the very important theoretical-experimental methods for investigation of 
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equilibria in condensed systems. The monograph by Petit [2] is devoted specially to 
molten systems. If the investigated system fulfils certain conditions cryometric 
method allows to obtain the value of the enthalpy of fusion of the component A in 
the system A—В and it provides us with important information on the mechanism 
of thermal dissociation of complex anions [3]. It has been proved that cryometry 
can be carried out also on the basis of a complex compound with nonzero degree of 
thermal dissociation [4]. 

Recently the cryometric method has been applied also to the ternary systems. In 
this case the third component С is added to the binary eutectic mixture A + B. 
From the analogy with classical cryometric method it follows that we can obtain in 
this way the value of the molar enthalpy of fusion of the eutectic mixture of the 
substances A + B. If we denote this quantity as AH(fus, A + B, E) it holds 

AH(fus, A + B, E) = JC(A, E) • AH(A, (I, E/s0)) + 

+ J C ( B , E ) A H ( B , (l,E/s0)) (1) 

where JC(A, E), jt(B, E) are the concentration coordinates of the eutectic point E in 
the system A—B; JC(A, E ) + JC(B, E) = 1. AH(i, (1, E/s0)) are the partial molar 
enthalpies of fusion of the components A and В at the eutectic point E. These 
partial molar enthalpies of fusion occur also in the relationship which has been 
derived by Dodé and Hagege [5] 

JC(A, E) • AH(1, E/s°) • fc(A, E) = jt(B, E) • AH(1, E/s°) • fc(B, E) (2) 

where /c(A, E), /c(B, E) are the slopes of tangents to the liquidus curves of the 
components A and В at the eutectic point E. (A simple eutectic system A—В is 
assumed.) 

If we know the quantity AH(fus, A + B, E) and the slopes k(A, E), /c(B, E) we 
can calculate the partial molar enthalpies of fusion AH(i, (1, E/s0)) as well as the 
partial molar enthalpies of mixing AH(i, (1, E/l°), mix) at the point E [6]. The 
relationship (2) has been used in a simplified form for the verifying principal 
correctness of the experimental phase diagrams [7, 8]. 

While the theoretical background of cryometry in binary systems has been 
derived in about 1900 the theory of cryometry in ternary systems has been 
published by Fórland only in 1964 [9]. Fórland discussed the case when one 
molecule of the third component brings only one new species in the eutectic 
mixture. In this case the addition of the third substance MC (its mole fraction is 
denoted JC(MC)) decreases the temperature of liquidus of the eutectic mixture 
AC + BC according to the relationship 

dT(AC + BC)^ RTT(E) ( . 
djc(MC) AH(fus, AC + ВС, E) ( ] 

In the limit for JC(MC) -» 0 it holds 
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Hm d T

 =

 R ( T ( E ) ) 2

 (4) 

X(MQLO d*(MC) AH(fus, A C + ВС, E) к*> 

Let us consider the binary system A—В in which each molecule of the substance 
В brings in the pure substance A just one new species. We assume that the 
substance В does not form solid solution in A. Then for the limit temperature 
gradient of the liquidus of component A it holds 

dr(A) = K(T(fus,A))2

 m 

,i™id*(A) AH(fus,A) i ; 

Because JC(A) + JC(B) = 1 and djc(A)= - d x ( B ) we obtain 

d T ( A ) = K(T(fus,A)) 2 

xlZodx(A) AH(fus,A) {0) 

It follows that there is a formal identity between the relationships (4) and (6). 
In 1969 Haase and Schönen [10] derived in a very precise way the basic 

relationship for cryometry in ternary systems. Their relationship holds generally, 
i.e. also in the case when molecule of the third component С brings in the eutectic 
mixture A + B "fc" new (foreign) species. It holds 

. Л Г = R(T(E))2 

J™o*(C) AH(fus,A + P,E)"* ( 7 ) 

Because A T = T ( E ) - T, d A T = - d T and by differentiation of the left-hand side 
of eqn (7) we obtain 

, i m _E2L= Д(ПЕ))* k (8) 

x(™o djc(C) AH(fus, A + B, E) K {ö) 

Thus the relationship derived by Fórland (4) is a special case of the relationship (8) 
for fc = l. 

In 1974 Fellner and Matiašovský [11] derived the basic relationship for 
cryometry in ternary systems in different way. They made two simplifying 
assumptions: 

i) the system is ideal (i.e. a(i) = jt(i)), 
ii) AH(fus, A, B)^ / (T) . 
Authors of the cited paper [11] point out that the condition for correctness of 

cryometry given by Fórland, viz. that the curve of monovariant equilibrium starting 
at the point E must, at least in the vicinity of point E, go towards the vertex 
С (Fig. l)_is fulfilled for ideal systems only when AH(fus, A) = AH(fus, B). 
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Fig. L Cryometry in a ternary system on the 
basis of the binary system A C — В С . 

MC AC Cross-hatched area contains no solid solutions. 

A new method of derivation of the basic cryometric relationship 

Gibbs—Duhem equation for the ternary system at constant T, p reads 

JC(A) • dG(A) + JC(B) • dG(B) + JC(C) • dG(C) = 0 (9) 

It holds 

jt(A) + jc(B) + jt(C)=l 

Because G(i) = G°(i) + RT In a(\) we get after rearrangement 

x(A) • d In a(A) + JC(B) • d In a(B) = - x(C) • d In a(C) (10) 

Differential form of the Le Chatelier—Shreder equation is 

, . ,.. AH(i, l °/s 0 )^ M n 

d In a(\) = д Г dT (11) 

We can insert the right-hand side of this equation for i = A, В into eqn (10) 

x(A) A H ( ^ ° / S 0 ) dT + x(B) А Н ( У S 0 ) dT= -x(C) • d In a(C) (12) 

Dependence of the activity of component С on concentration can be expressed by 
the universal relationship (12). Then we obtain 

- x(C) • d In (x(Q)k = - x(C) • к ^ ^ = - к • áx(C) (13) 

where к is the number of new (foreign) species which one molecule of component 
С brings into the mixture A 4- B. Inserting from eqn (13) to eqn (12) we get after 
rearrangement 
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dT RT2 

x(A) • AH(A, l°/s°) + *(B) • AH(B, 17s°) 
к • dx(C) (14) 

In the limit for * ( C ) ^ 0 , T^ T(E), x(A)-+x(A, E), x(B)-*x-(B, E), AH(i, 17 
/s°)-> AH(i, E, 17s°) and it holds 

lim 
dT R(T(E)y 

жк (15) 
x(c>-.o dx(C) JC(A, E) • AH(A, E, 17s°) + x(B, E) • ДН(В, E, 17s°) 

When 

JC(A, E) • ДЯ(А, E, 17s°) + *(B, E) • AH(B, E, I7s°) = AH(fus, A + B, E) 

the derived relationship (15) is identical with the relationship (8) derived by Haase 
and Schönert [10]. 

Another possibility of derivation of the basic relationship for cryometry in 
ternary systems is based on the application of the isothermal-isobaric AGTp cycle. 

Conditions for phase equilibria A(l)<^A(s°) (points E and E,) and B(l)*±B(s°) 
(points E and E2) at T, p = const (Fig. 2) are fulfilled if 

G(A,l) = G(A,s°); G(B, 1) = G(B, s°) 

rifus, MC)" 

rifus, AC) 

Fig. 2. Scheme for derivation of the relations for cryometric method in ternary systems. 
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If we multiply the first condition by JC(A, E) and the second by JC(B, E) and add 
both terms we obtain 

jt(A, E) • G(A, 1) + JC(B, E) • G(B, 1) = JC(A, E) • G(A, s°) + 

+ J C ( B , E ) G ( B , S ° ) (16) 

Let us consider equilibrium at points Z and Z, (Fig. 2). In this case the components 
А, В in liquid phase composed of components A + B + C are in equilibrium with 
pure solid components A(s°) and B(s°). We may choose as standard state an 
undercooled (T< T(E)) eutectic liquid solution of composition JC(A, E) + дс(В, E). 
Then for the four-term AGT>P cycle (Figs. Зя, 3b) it follows 

x(AC) • AC(l, EW 

+ x(BC) - B C d , E) 

xlAC) • AC(l) • 

X(BC) • вёш 

x(AC) -АС(Г) • 

• x(BC) • BC(l°) 

x(AC) • AC(su) • 

• X(BC) -BC(s°) 

Fig. За. The isobaric-isothermal cycle. 

x(A) -G(A, I, E ) * 

+ x(B) -G(B, [t E) 

x(A) -G(A, [)* 

* x(B) • GIB, I) 

x(A) - G(A, Г ) * 

* x ( B ) -GiB, 1°) 

x(A) • G l A s I * 

* x(B) • GIB, su) 

Fig. 3b. The isobaric-isothermal AG-cycle. 

ZAG = AG(2/l) + AG(3/2) + AG(4/3) + AG(l/4) = 0 

AG(2/1) = JC(A, E) (G(A, 1°) - G(A, s0)) + JC(B, E) (G(B, 1°) -

- G(B, s0)) = JC(A, E) • AG(A, l°/s°) + JC(B, E) • AG(B, l°/s°) 

AG(3/2) = JC(A, E) • AG(A, (1, E)/I°) + JC(B, E) • AG(B, (1, E)/l°) 

Index "1, E" denotes the undercooled liquid phase corresponding to composition of 
the point E. 

AG(4/3) = JC(A, E) • AG(A, 1/(1, E)) + JC(B, E) • AG(B, 1/(1, E)) 
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Because AG(l/4) = 0 (as a result of phase equilibrium) we obtain inserting into 
expression for SAG the equation 

JC(A, E) • A G(A, 1/(1, E)) + JC(B, E) • A G(B, 1/(1, E)) = 

= - [JC(A, E) • A G(A, (1, E)/s°) + JC(B, E) • A G(B, (1, E)/s0)] (17) 

The term on the right-hand side of eqn (17) corresponds to the negative change in 
Gibbs energy of the process when 1 mol of mixture having composition JC(A, E), 
JC(B, E) melts and pure solid phases form liquid binary solution A(l, E) + B(l, E); 
JC(A, E) + jt(B, E) = 1. Therefore the right-hand side of eqn (17) can be denoted as 
AG(fus, A + B, E). It holds 

AG(fus, A + B, E) = AH(fus, A + B, E) - T AS(fus, A + B, E) 

and because 

A S(fus, A + B, E) = AH(fus, A + B, E)/T(E) 

we may further write 

JC(A, E) • AG(A, 1/(1, E)) + JC(B, E) • A G(B, 1/(1, E)) = 

= -AH(fus,A + B , E ) ( l - T ^ ) (18) 

Because the quantities JC(A, E), JC(B, E), AH(fus, A + B, E), T(E) are constants 
derivation of eqn (18) according to x(C) gives1 

dAG(A,l/(l,E)) dAG(B,l/(l,E))_ 
x(A'E) ďijč) +*(B>E) щс) -

Afí(fus,A + B, E) dT . . 
T(E) 'dje(C) { У ) 

Now we insert in the Gibbs—Duhem equation (10) for d In a(i), (i = A, B), the 
expression dAG(i, 1/(1, E))/RT which can be obtained by derivation of the identity 
RT In o(i, 1) = G(i, 1) - G(i, (1, E)) = AG(i, 1/(1, E)). 

After multiplying by the term RT/dx(C) and rearrangement we obtain 

x(A) d A Ó (
d

A ; ( ^
( ' ' E ) )

 + x(B) d A Ó ^ ) ( ' ' E ) ) = - RTxiC) • d in a(C) (20) 

Let я(С) = (x(C))*, then d In fl(C) = d In (x(C))* = k dx(C)/jt(C) and after insert­
ing to eqn (20) we obtain 

, w ^ t , M WEIL8T , ( 2 / ) 
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When x ( C H 0 , x(A)^>x(A, E), х(В)->х(В, E) and it holds 

.. AH(fus,A + B, E) dT D _ , _ 4 . 

J™„ Ť(E) ďí(Q = - R T ( E ) • * 
or 

, i m -^-= R ( T № ) ) 2

 fc (22) 
Jc^odjc(C) AH(fus,A + B,E) l J 

Thus we obtained again eqn (8). 
Finally it should be pointed out that a successfull realization of the cryometric 

method in ternary systems is not limited only to the systems with simple eutectic as 
it is stated in papers [9—11]. It is sufficient if the system A—В has a simple eutectic 
character and if no solid solutions are formed in the near vicinity of the curve of 
monovariant equilibrium starting at the point E. 

Fellner and Matiašovský [11] found that in ideal systems the cryometry in the 
ternary systems can be correctly realized only if AH(fus, A) = AH(fus, B). This 
condition is too strict and it would mean a remarkable complication of the 
cryometric method. We try to eliminate these restrictions. The temperature 
dependence of the quantity ACp(i) will be taken into account by employing the 
differential form of the Le Chatelier—Shreder equation 

, . , л Afí ( i , l ° /s 0 )^ , „ . 
d In fl(i) =

 K
Rrp ' ÚT (23) 

where AH(i, I°/s°) = H(i, 1°)-H(i, s°) is the molar enthalpy corresponding to the 
phase transition "solidus—liquidus" of the pure i-th component at the temperature 
T. For fl(i) = jc(i) it follows from eqn (23) 

, , , л djc(i) AH(i, l °/s 0 )^ , _ . 
d l n * ( l ) = 7 ( i ) К Г d T ( 2 4 ) 

For the d*(A)/d;t(B) we readily obtain 

dx(A) x(A) • AH(A, l°/s°) ( . 
dx(B) x(B) • AH(B, 17s°) K > 

Because x(A), JC(B), and x(C) are the mole fractions it holds 

dx(C)=-d;c(B)-d;c(A) 

and thus 
dx(C)_ dx(A) ..,. 
dx(B) djt(B) K ' 

After introducing from eqn (25) into eqn (26) we obtain 
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dx(C) = 

djc(B) 

and in the limit for x(C)—>0 

.. dx(C) 
lim -т-/Б\ 

*(C>-o UX(D) 

- 1 -
x(A) • Afí(A, l°/s°) 
x(B)AH(B, l°/s°) 

x(A, E) • Afí(A, E, ľ/s°) 
x(B, E) • АН(В, E, 17s°) 

(27) 

The index " E " at the quantities in eqn (27) denotes that these quantities are 
related to the eutectic point E in a simple binary system A—В (Fig. 4). 

For the equation of the line passing through the points С and E (Fig. 5) it holds 

c(o; D 

Fig. 4. Cryometry in a ternary system based 
on the binary system A—B. 

AÍ0; 0) Bd^O) 

x(B, E) 

Fig. 5. The straight line connecting the points 
CandE. 

x(C)=-
1 

and further 

x(C, E) 

dx(C) _ 

x(B)+l 

1 
JSodx(B) x(B,E) 

Comparing eqns (21) and (29) we obtain that 

1 x(A, E) • AH(l7s°) 
x(B,E)~ x(B, E) • AH(l°/s°) 
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Because JC(A, E) + JC(B, E) = 1 we can readily prove that eqn (30) is fulfilled only 
when 

AH(A, E, l°/s°) = AH(B, E, l°/s°) (31) 

Eqn (31) is therefore a more precise condition for correctness of the cryometric 
method in the ternary systems with respect to the first limitation. 

For nonideal systems it holds 

d In a(\) = d In jc(i) + d In y(i) 

and then 

djc(i) AH(i,l°/s°) ^ , . г л , „ ч 

7(i) R ľ ; d ľ - d l " r ( 0 (32) 
Using the same procedure as above we find that it holds 

1 JC(A, E) (AH(A, E, l°/s°) dT-R(T(E))2 d In y(A, E)) 
JC(B, E) JC(B, E) (АЯ(В, E, l°/s°) dT- R(T(E))2 d In y(B, E)) l ] 

Thus for nonideal systems the condition AH(A, E, l°/s°) = AH(B, E, l°/s°) does 
not hold. 

In order to arrange eqn (33) in an explicit form we will assume that the activities 
of components A and В may be expressed by the universal relationship [12] 

fl(A) = (jt(A))* (B/A) 

a(B) = (x(B))k(A/B) (34) 

where /c(B/A), /c(A/B) equal the number of new (foreign) species which one 
molecule of substance В brings into substance A, and vice versa. In this case 
d In fl(i) = fc(j/i) djc(i)jc(i) and it holds 

1 x(A, E) • AH(A, E, l°/s°) • fe(A/B) 
JC(B, E) * JC(B, E) • AH(B, E, l°/s°) • k(B/A) (J:y) 

From this we obtain the condition of correctness of cryometry 

АЯ(А, E, l°/s°) • k(A/B) = ДН(В, E, l°/s°) • fc(B/A) (36) 

Eqn (36) is identical with the condition derived by Fellner and Matiašovský not 
only for fc(A/B) = l, fc(B/A) = l but also for fe(A/B) = fc(B/A). 

From the formal point of view, the original condition AH(fus, A) = AH(fus, B) 
(as well as the condition given by eqn (36)) is too stringent. If it held in that 
sense that a small difference between the quantities AH(fus, A) and AH(fus, B) 
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(or more precisely between the terms AH(A, E, I°/s°) • /c(A/B) and AH(B,E,1°/ 
/s°) • /c(B/A)) would lead to wrong values of the quantity AH(fus, A + B, E) it 
would mean a remarkable limitation of applicability of the cryometric method to 
investigation of the ternary systems. 

We estimated the influence of the deviation from the given conditions on the 
quantity AH(fus, A 4- В, E) by means of the so-called theoretical experiment. The 
following procedure was used: 

i) We chose for components A and В the following values of T(fus, i) and 
AH(fus,i): 

T(fus, A) = 1200 K, AH(fus, A) = 30 000 J mol"1 

T(fus, B) = 900 K, 1200 K, 2000 К 

AH(fus, B) = 6000 J mol-1, 30 000 J mol"1, 60 000 J mol"1 

ii) Using the Le Chatelier—Shreder equation we calculated the liquidus curves 
of components A and В in the binary system A—В up to 500 К (i.e. also for 
T(i)<T(A + B, E)). Their cross-section gives coordinates of the eutectic point 
in the system A—B. The calculations were carried out under the assumptions 
AH(fus, i) = AH(i, l°/s°) and fl(i) = jc(i). 

iii) Formally the values JC(A) + JC(B), JC(A, E) + JC(B, E) give T(i) < T(A + В, E) 
which is the decrease of temperature as a result of the addition of substance С It 
must hold JC(A) + JC(B) + JC(C) = 1. 

iv) On the basis of known values of JC(A), JC(B), JC(C) the curves of monovariant 
equilibrium were constructed (Fig. 6). 

v) For given x(C) we determined AT and using the cryometric method we 
calculated AH(fus, A + B, E). The data used in the calculation according to the 
relationship 

A H ( t u S ,A + B,E) = № | Ä ( 37) 

are summarized in Table 1. 
The quantity /c(l°) was determined by extrapolation of the dependence 

from the condition AJC(C)-»0. 

vi) The values of AH(fus, A + B, E) calculated in this way were compared with 
ideal enthalpy of fusion of the system A—В at the eutectic point (Table 2) 

AH(A + B, E, id) = JC(A) • AH(A, l°/s°) + JC(B) • АЯ(В, l°/s°) (38) 
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Table 1 

The values k(\°) needed for the calculation of AH(fus, A + B, E) 
T(fus, A)= 1200 K; AH(fus, A) = 30 000 J mol"1 

T(fus, B) 
К 

6 000 

/c(l°) 

AH(fus. B) 
J morT 

30 000 

*fl°) 

60 000 

цп 
900 

1200 
2000 

469 
470 
450 

190 
260 
337 

126 
210 
346 

Tab/e 2 

Comparison of the values AH(A + B, id, E) with the values AH(fus, A + В, E), calculated under the 
application of cryometric method 

Trfii«: R\ 

К 

900 

1200 

2000 

T(fus B) 

К 

900 

1200 

2000 

T(fus, B) 

К 

900 

1200 

2000 

AH(fus,A + B, 

9 747.4 

11 828.1 

14 809.8 

AH(fus,A + B, 

30 502.9 

30411.6 

30 048.2 

AH(fus, A + B, 

48 905.8 

42 362.7 

32 832.5 

E) 

E) 

E) 

J mol
-1 

AH(A + B,id, E) 

9 758.4 

11 882.4 

14 625.6 

A
"<*?,

B
>-30 000 

J mol"
1 

AH(A + B, id, E) 

30 000 

30 000 

30 000 

J mol
-1 

AH(A + B,id,E) 

50 820.0 

41 460.0 

32 307.0 

% 

-0.1 

-0.5 

1.3 

% 

1.7 

1.4 

1.4 

% 

-3.8 

2.2 

1.6 
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CRYOMETRY IN TERNARY SYSTEMS 

From the condition given by eqn (36) it follows 

Afí(A, E, l°/s°) = A:(B/A) 
ДЯ(В, E, l°/s°) k(A/B) 

The chosen ratio of enthalpies in examples corresponds to the ratio of correction 
factors 6:1 and it includes both the ideal systems and the systems the behaviour of 

Jl. 

I: \ 

// í 

I i 

\A i 
к\ i 

/ M \ : 

ю 20 30 40 50 60 70 
E 3 E 2 E 4 

80 90 

Fig. 6. The lines of monovariant equilibrium (of the common crystallization) of the substances A and B. 

T(fus,B)= 900 К 
T(fus,B)= 900 К 
T(fus,B)= 900 К 
T(fus, B)=1200K 
T(fus,B)=1200K 
T(fus,B)=1200K 
T(fus, B) = 2000K 
T(fus,B) = 2000K 
T(fus, B) = 2000K 

AH(fus,B) = 
AH(fus,B) = 
AH(fus,B) = 
AH(fus,B) = 
AH(fus,B) = 
AH(fus,B) = 
AH(fus,B) = 
AH(fus,B) = 
AH(fus,B) = 

: 6 000 J moľ 
: 30 000 J moľ 
60 000 J moľ 

6 000Jmoľ 
30 00aJmoľ 
60 000 J moľ 

6 000 J moľ 
30 000Jmoľ 
60 000Jmoľ 
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which is very far from classical ideality. The temperature dependence of the phase 
transition AH(i, l°/s°) was not considered. However, this effect cannot exceed 
30 % even for large temperature intervals and it is therefore included in the range 
of chosen values of AH(fus, i). 
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