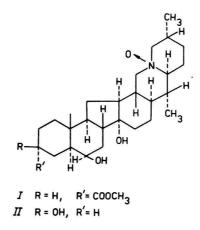
Isolation and identification of verticine N-oxide from Fritillaria L.

I. MAŠTEROVÁ, ^bV. KETTMANN, and ^{}J. TOMKO

*Department of Pharmacognosy and Botany, Faculty of Pharmacy, Komenský University, CS-832 32 Bratislava

^bDepartment of Analytical Chemistry, Faculty of Pharmacy, Komenský University, CS-832 32 Bratislava


Received 10 April 1985

The structure of verticine N-oxide, isolated for the first time from the genus *Fritillaria* L., family *Liliaceae*, was solved by diffraction methods.

Из растений рода Fritillaria L., семейства Liliaceae впервые выделена *N*-окись вертицина, строение которой было установлено с помощью дифракционных методов.

Only few N-oxides of cevanine alkaloids appearing in genera Petilium and Korolkowia, family Liliaceae, have been reported. Thus, imperialine N-oxide was isolated from the aerial part of Petilium eduardi in 1976 [1]. The same compound was found in Petilium raddeana in 1981; authors of this paper state, however, that both alkaloids are not identical, but isomeric. These results were backed by physicochemical and spectral data of both alkaloids [2].

A new alkaloid denoted severine N-oxide (I) was isolated from the underground part of Korolkowia sewerzowii REGEL [3]; another N-oxide separated from the same plant was sevedine N-oxide (II) of molecular formula $C_{27}H_{45}NO_4$ [4].

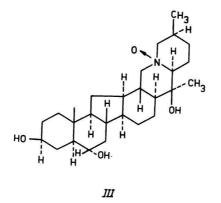
It has been shown that severine N-oxide and sevedine N-oxide are identical with the partially synthetically prepared substances [3, 4].

Imperialine, verticinium chloride, and a small amount of a base HIP-17 have now been isolated from bulbs of *Fritillaria imperialis* L. cv. aurora in our research program on cevanine alkaloids.

Experimental

The dried sum of alkaloids (11.2 g) obtained by extracting the drug (19.5 kg) with ethanol was hot dissolved in methanol containing a small amount of chloroform and left to crystallize. Recrystallization from the same solvent afforded imperialine, the main alkaloid of the bulbs of *Fritillaria imperialis* L. cv. aurora.

Mother liquors yielded a mixture of minor alkaloids (5.2 g), which was separated by column chromatography on alumina (activity grade II, neutral, Lachema, Brno). The solvent system used was tetrachloromethane—benzene—methanol (volume ratio = 40:50:3); the separation was monitored by thin-layer chromatography on silica gel sheets by a double development in benzene—methanol—acetone—diethylamine (volume ratio = 90:4:4:2) and the alkaloids were spotted by Dragendorff reagent. The combined fraction (denoted HIP) (2.3725 g) was rechromatographed on a silica-gel-packed column (Silpearl, floated, No. 4, deactivated with water (10 mass %) by elution with chloroform—methanol—benzene (volume ratio = 8:1:1).


Fraction HIP-17 (eluates 1-17) revealed one spot when monitored by thin-layer chromatography, was crystallized from methanol to give some crystals.

Fraction HIP-54 (eluates 28-54) (0.7621 g) was evaporated and rechromatographed through an alumina column with benzene—tetrachloromethane—methanol (volume ratio = 50:40:6) to afford, after crystallization from acetone—chloroform, an alkaloid (0.4937 g), which was shown to be identical with verticinium chloride [5, 6].

A total diffraction analysis was employed for structure elucidation of the alkaloid denoted as HIP-17. Dimension of the crystal was $0.5 \text{ mm} \times 0.15 \text{ mm} \times 0.1 \text{ mm}$. The refined crystal parameters $a = 10.830(2) \times 10^{-10}$ m, $b = 5.859(1) \times 10^{-10}$ m, $c = 20.187(4) \times 10^{-10}$ m, $\beta =$ 97.26(2)° were obtained by the least-square method from twelve reflections precisely centred on a diffractometer Syntex P2₁; the systematic extinctions of reflections of 0k0 type for k = 2n + 1 unequivocally showed the P2₁ space group. The diffraction intensities were measured with a Syntex P2₁ diffractometer using the graphite-monochromatized light radiation Cu Kā ($\lambda = 1.5418 \times 10^{-10}$ m) Θ -2 Θ by a scan technique in the $3 < 2\Theta \leq 110^{\circ}$ interval; 1448 reflections with $I \ge 1.96 \sigma(I)$ of the totally 1785 measured reflections were employed to elucidate and refine the structure. Selection of the enantiomorph in the polar group $P2_1$ was ambiguous and therefore solution of the structure was made possible by combination of the calculation procedures MULTAN [7] and MAGIC [8]. The structure was in the final stage refined by the least-square method to R = 0.047 ($R = \Sigma | |F_0| - |F_1|$) $|\Sigma| |F_o|$, where $|F_o|$ and $|F_c|$ are the respective observed and calculated structural amplitudes); anisotropic thermal vibrations for the nonhydrogen atoms and isotropic vibrations for hydrogen atoms were presumed; calculation $|F_c|$ was based on the tabulated scattering curves of the neutral atoms [9]; the final map of the residual electron density contained randomly distributed maxima below the 0.15 $(10^{-10} \text{ m})^{-3}$ limit.

Results and discussion

Results of the diffraction analysis unequivocally showed alkaloid HIP-17 to be $3\beta_{,6}\alpha_{,2}0\beta_{-}$ trihydroxy- $5\alpha_{-}$ cevanine N-oxide (verticine N-oxide) (III).

As evident from the formula III, the presence of an N-oxide arrangement did not change the usual *trans* configuration at the E/F ring junction as already observed with quaternization of verticinone with CH₃Br [10]; this fact can be rationalized by a greater steric volume of the methyl group when compared with the oxygen atom. The bond lengths, valence and torsion angles in the 5α -cevanine skeleton of the alkaloid under investigation are very close to those of other cevanine alkaloids [11-14].

References

- 1. Nabiev, A., Shakirov, R., and Yunusov, S. Yu., Khim. Prir. Soedin. 1976, 676.
- 2. Nabiev, A., Shakirov, R., and Shakirova, U. T., Khim. Prir. Soedin. 1981, 405.
- 3. Samikov, K., Abdulaeva, D. U., Shakirov, R., and Yunusov, S. Yu., Khim. Prir. Soedin. 1979, 823.
- 4. Samikov, K., Kul'kova, V. U., and Shakirov, R., Khim. Prir. Soedin. 1981, 529.
- 5. Mašterová, I., Kettmann, V., Majer, J., and Tomko, J., Arch. Pharm. (Weinheim) 315, 157 (1982).
- 6. Mašterová, I. and Tomko, J., Chem. Zvesti 32, 116 (1978).
- Main, P., Hull, S. E., Lessinger, L., Germain, G., Declercq, J. P., and Woolfson, M. M., MULTAN 78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data. Universities of York, England, and Louvain. Belgium, 1978.
- 8. Declercq, J. P., Germain, G., and Woolfson, M. M., Acta Crystallogr. A31, 367 (1975).

- 9. International Tables for X-Ray Crystallography, Vol. IV. Kynoch Press, Birmingham, 1974.
- 10. Itô, S., Fukazawa, Y., and Okuda, T., Tetrahedron Lett. 1968, 5373.
- 11. Brisse, F., Acta Crystallogr. B26, 171 (1970).
- 12. Itô, S., Fukazawa, Y., and Miyashita, M., Tetrahedron Lett. 1976, 3161.
- 13. Pavelčík, F. and Tomko, J., Acta Crystallogr. B35, 1790 (1979).
- 14. Kettmann, V., Mašterová, I., and Tomko, J., Acta Crystallogr. B38, 978 (1982).

Translated by Z. Votický

ï