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A new model of electrical conductivity of molten salt mixtures, based on
the idea of an incomplete dissociation of electrolyte components, is
proposed. In systems with a common ion the dissociation degree of the
component is affected by the presence of the second component. Conse-
quently, the dissociation degree of both components is not constant, but
changes with the composition of the mixture, which affects the concentra-
tion of the conducting particles in the electrolyte. On examples of the KCl
—NaCl and KF—LIiF binary systems it was shown that the “dissociation
model” describes very well the course of the molar conductivity of binary
systems with a common ion.

IpennoxeHa HOBasi MOJEJb 3JIEKTPOIPOBOJHOCTH PacCIUIaBOB cMecei
cosielf, OCHOBaHHasl Ha MIee HEMOJHON AMCCOLHALMH 3JIEKTPOJHTHYECKUX
KOMIIOHEHTOB. B cicTeMax ¢ 0OILIIMM HOHOM CTENEHb JUCCOLMALNU OJHOTO
KOMIIOHEHTA NOJBEP)XeHa BJIMSHUIO BTOPOro KOMIMOHeHTa. Clie1oBaTelb-
HO, CTENEeHb QUCCOUHMALUN 000MX KOMIOHEHTOB He IOCTOSIHHA, a ONpeleis-
€TCS COCTAaBOM CMECH, OT KOTOPOIO 3aBHCHT KOHIIEHTPALMA IPOBOISLINX
vacTuI B asekTposute. Ha npumepax 6unapubix cucteM KCl—NaClu KF—
—LiF moka3aHo, 4YTO «IMCCOLMAaTUBHAs MOJENb» OYEHb XOPOIIO OIMMCHI-
BaeT MpOLECC MOJAPHOH MPOBOAMMOCTH OMHAapHBIX CHCTEM C OOIIMM
HOHOM.

The experimental study of the electrical conductivity of multicomponent
molten systems is generally pretentious and with regard to the relative character
of the measurement the results of various authors differ considerably. Therefore
numerous attempts have been made to elaborate a theoretical model enabling
the calculation of the electrical conductivity of a mixture on the basis of the
knowledge of conductivities of the pure components.

The principal problem in the elaboration of a theoretical model of the
electrical conductivity is the problem of an ideal behaviour. In the case of the
molar conductivity the assumption of the additive ideal behaviour has been
frequently used. However, this assumption is not acceptable owing to the
existence of the interaction of the components in the mixture, given by the
nature of the repulsive forces between the ions and determining the coordination
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sphere of each kind of ions. As a matter of fact, no system with an additive
course of the molar conductivity may be found in the literature. All investigated
systems exhibit molar conductivities lower than additive.

The model of the molar conductivity of binary systems based on the assump-
tion of a mutual interaction of the components has been proposed by Markov
and Shumina [1]. They supposed that in the molten binary mixture AX—BX
interactions of the type AXAX, BXBX and AXBX or BXAX are possible. The
probability of the interactions of the AXAX and BXBX type is proportional to
the square of the mole fraction of the respective component x;, the interactions
of the AXBX and BXAX type are proportional to the product 2x, x,. For the
molar conductivity of an ideal binary molten mixture it holds (for 4, > 4,)

/lmix=x% ).,-i—x% AH+2x x, A4 1)

The application of the model proposed by Markov and Shumina to different
systems shows that this model is acceptable only in some simplest cases of the
systems with a common ion, such as NaCl—KCl, PbCl,—PbBr,, and KNO,
—NaNO,.

More universal model of the molar conductivity of the binary systems which
supposes the interaction of k ions in systems with a common ion has been
theoretically derived by Kuvist [2] in the form

lmix = xll( )'l + (1 - x,l() 2’2 (2)

The expression xf represents the probability of the interaction of k ions of the
component AX in a mixture with the mole fraction x,. It may be easily shown
that for kK = 2 eqn (2) transforms to eqn (/). Thus the model proposed by
Markov and Shumina [1] is only a special case of the Kvist’s model, according
to which the molar conductivity is determined by the polycationic and poly-
anionic interactions, respectively. The Kvist’s model describes well e.g. the
systems of alkali and silver sulfates for k£ ranging from 2.7 up to 4.3.

The next two models of the electrical conductivity of binary and multicom-
ponent systems have been proposed by Fellner [3]. On the basis of the idea of
two possible ways of resistance coupling, he proposed the series and parallel
models of the electrical conductivity of a mixture. He supposed that in an ideal
mixture the mutual influence of conducting particles does not occur. According
to Feliner [3] the conductivity of a mixture may be calculated as a sum of the
contributions of the pure components placed in separated conductance cells
linked either in series or parallelly. Denoting the conductivities of the com-
ponents in a binary system by s, and », and their molar volumes by ¥}° and V7,
Fellner derived for the conductivity of a mixture according to the series model
the relation
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[(x, V° x5 W
xmix.s = (xl I/lo'i_ x2 V"c)/ (f + —}( _o) (3)
! 2

After rearrangement of eqn (3) we get for the molar conductivity of a mixture
according to the series model

v =
Amix‘s = (xl Vl°+ X3 VZO)Z/('X' /‘{; - 2 ) ) (4)

i R}

It has been shown [4] that the series model gives a good accordance with the
experimentally determined molar conductivity of a molten mixture in such
cases, when the system behaves ideally also from the thermodynamic point of
view. If the system, however, deviates from the thermodynamic ideality, the
series model fails.

For the parallel model Fellner [3] derived the relation

Hoinp = (X1 W+ x, w /x WP+x, VD) )

By definition » - ¥° = 4, consequently the parallel model of the conductivity is
obviously identical with the additive model of the molar conductivity. As shown
in [4], the parallel model represents a limiting case, in which no interaction of
components takes place. Therefore, the real molar conductivity is always lower
than that one calculated according to the parallel model.

In the present work, the “dissociation model” of the molar conductivity of
molten binary systems with a common ion, based on the idea of an incomplete
dissociation of components, is proposed. The validity of the dissociation model
is verified in the KCl-—NaCl and KF—LIiF systems.

Theoretical

Let us consider a binary system with a common anion of the type AX—BX.
Let us further assume that each component in the molten mixture is incomplete-
ly dissociated and that an equilibrium between the ionic pairs A* X~, or
B* X~ and the “free” ions A* and X~, and B* and X~ constitutes in the melt

A" X" o At + X" (A4)
B* X~ e B*+ X~ (B)
If we denote the dissociation degrees of the components in the mixture by @, and
@, and their mole fractions by x, and x,, then in one mole of an arbitrary mixture

of x,(AX) and x,(BX) the following equilibrium amounts of substances of
particles are present
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Nae =X, @ Ngs =X, @,
Nx- =X, @ +X; & (6)
na+ x- =x(1 — @) ngs x- = X(1 — @)

The total amount of substance of all particlesisthenn =1+ x, a +x, a,.
For the equilibrium mole fractions of individual particles we get

_ Xy 111 _ X aZ
Xpt = Xg+ =
l+x a+x, o l+x a+x o
X, +x Q
Xy- = 1 1 2 2 (7)
l4+x o+x o
_ x (1 — a) _ X (1 — @)
XA+ x- = X+ x- =
l+x a+x, l+x a+x a

The equilibrium constants of the dissociation reactions according to eqns (A4)
and (B) are given by the relations

g _ a(x, a+x a) &)
1 - a(z)l (1 - al) (l + xl (ZI + x2 az)
2 a a a
. = Qpy (X a4+ X, @) 9)

_l_a(z)z—(l—az)(1+xl al+x2 az)

where a;, and a, are the dissociation degrees of the pure components AX and
BX at the given temperature. By rearranging eqns (8) and (9) we get for e, and
a, in an arbitrary mixture the following relations

a%'xl + a xz(az+a(2)|)_a<2)1(1 +x, )=0 (10)
G-x+ @ x(e+ap)—ap(l+x a)=0 1)

These implicit equations for the concentration dependences of @, and a, can be
solved analytically. Separating a, in eqn (10)

a—x @—x,-q a
%= 01 1 1 2 1 01 (12)
xz'al“xz'agl

and inserting it into eqn (/7), we get for g, the cubic equation

ailx, - x)(af; — ap)] + ai{x,[x (a3, - ay — aj) + x,(ap; — o)} +

(13)
+ o[, (1 + x,) (@3, a5, — a3l + a1 — ag,) x, =0
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This equation can be solved either analytically or, preferably, using the Newton
—Raphson’s method. As starting values for ¢, and @, it is advantageous to
choose the values of the dissociation degrees of the pure components a,, and a, .
In this way it is possible to calculate the values of @, and @, for an arbitrary
composition of the mixture and for arbitrary values of the dissociation degrees
of the pure components.

For the conductivity of the electrolyte the general equation is valid

k
=Y F & & u (14)
i=1
where c; are the molar concentrations of the particles with the mobility u, and
with the charge F z;. For the uni-univalent electrolytes z; = 1 and F u, = A,.
Eqn (/4) has then the form

: (I5)

where n; are the amounts of substances of the conducting particles in the mixture
and V is the total volume of the mixture. In the case of the molten electrolytes
it may be assumed that the ionic pairs A* X~ and B* X-, present in the
mixture, are electroneutral and do not contribute to the conductivity of the
electrolyte. The whole charge is transported by “free” ions, i.e. by cations A*
and B™ and anions X~ In such a case eqn (/5) may be written in the form

Np+ Ny -

nA~b~
Ko = “Agr = Ax 16
e M (16)

mix 7 A-Aﬁr +

If we consider one mole of the mixture, then according to eqn (8) n,. = X, a,
Hg+ = X5 O, Nx- =X, @ + X, @& and V=V, . (the molar volume of the
mixture). For the molar conductivity of the mixture we get

Amix = i Vomix = X1 @ Ape + X, @y Ags + (17)
+ (X, @+ x;- @) Ag-
and by rearranging
Amin = X1 @ (Ap+ + Ax-) + X, 05(Ags + Ax-) (18)

As the molar conductivities of the individual ions are not a priori known, their
sum can be expressed on the basis of the limiting conditions

1
A’A* + Ax— = ﬂ, AB-f + )«x— = — (19)

Q, Qp
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and we get for the molar conductivity of the molten mixture the final expression

A 2. ey e~ e S (20)
Q A
From eqn (20) it follows that if the dissociation degrees do not change with
composition, i.e. @, = q and @, = @, eqn (20) is identical with the parallel
model [3]. Thus the expression x,(a;/a,) may be considered as a certain ex-
pression for the “‘conductance activity’”” of the components in the mixture.
The calculation procedure is as follows: For the chosen values of the dissocia-
tion degrees of the pure components @y and a,, the values of @, and a, were
calculated according to eqns (/2) and (13) for each composition of the mixture
with the known value of the molar conductivity 4,,,. The theoretical value of
the molar conductivity 4, is calculated according to eqn (20). In such a way
for each couple of a, and qp values a set of theoretical values of molar
conductivities for a given composition of the mixture is obtained. The criterion
for the selection of the right values of @, and a,, is given by the relation

Z (li.exp - A’i.calc)z = min (2])
i=1
It is obvious that the derived eqns (/2), (/3), and (20) can be used in the binary
systems with common cation, too.

Results and discussion

For the verification of the applicability of the proposed model of the electrical
conductivity of the molten salt mixtures, the binary systems KCl-—NaCl and
KF—LIiF were selected. The experimental values of the molar conductivities of
both systems were calculated on the basis of the conductivity and density data
given in [5]. The course of the concentration dependences of the molar conduc-
tivities in these systems is essentially different. While the KCl—NaCl system
behaves rather “‘rationally’”” and the molar conductivity monotonically increases
with the increasing content of NaCl, there is an expressed minimum in the
KF—LiF system. From the point of view of the volume properties, both
systems are close to the ideal one (for x = 0.5 in the KCI—NaCl system V., =
= 0.26 cm* mol~', i.e. 0.58 % and in the KF—LIiF system V.., = 0.02 cm®* mol ',
i.e. ca. 0.1 % [5]), but the enthalpy of mixing in the KF—LIiF system for x = 0.5
attains the value of 4.91 kJ mol~' [6], which indicates a strong interaction of the
components.

Fig. 1 shows the experimental values of the molar conductivity of the molten
KCIl—NaCl system at the temperature of 1100 K and the theoretical courses
calculated according to the individual models. It is obvious that the parallel
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Fig. 1. Molar conductivity of the molten KCl—NaCl system at the temperature of 1100 K.
o Experimental values [5]; ——— parallel model; Markov and Shumina [1] model;
— — — series model; dissociation model.

model, which represents the additive behaviour, does not follow the reality. On
the other hand, the Markov and Shumina [1], the series [3] and the ““dissociation”™
models fit very well the experimental course of the molar conductivity. The
values of the standard deviations of the experimental values for the above
models are given in Table 1. From the given values it follows that in these three
cases the standard deviation does not surpass the experimental error which is

Table 1

Standard deviations of the experimental values of the molar conductivity from the calculated ones
according to the individual models in the KCl—NaCl and KF—LIF systems

System Model 2

S cm® mol ™!

KCl—NaCl Markov 1.47
series 1.09
parallel 6.00

dissociation 0.41-
KF—LIiF Markov 29.70
series 15.30
parallel 32.60
dissociation 2.70
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— with regard to the general level of the measuring technique — in the range
from 1 to 2 %. The dissociation model, however, describes the experimental
results most accurately.

The experimental values of the molar conductivity of the KF—LIiF system at
the temperature of 1300 K and the theoretical courses calculated according to
the various models are compared in Fig. 2. It is obvious that none of the
previously proposed models describes the real course of the molar conductivity
in this system. The minimum on the concentration dependence of the molar
conductivity is attained only with the series model. As follows from Table 1, the
standard deviations of the experimental values from the theoretical ones cal-
culated by use of those models surpass substantially the experimental error,
most probably due to the unadequate consideration of the interaction of the
components. On the other hand, the dissociation model describes the experi-
mental course very well, as it is possible to find such values of @, and «,, for
which the standard deviation is comparable with the experimental error of
2.7 Scm?’mol ™!

160

140

A/s cm2 mol'1

120

100

KF 0.2 0.4 0.6 0.8 LiF
x(LiF)

Fig. 2. Molar conductivity of the molten KF—LIiF system at the temperature of 1300 K.
o Experimental values [5]; ——— parallel model; Markov and Shumina [1] model;
————— series model; dissociation model.

The values of the dissociation degrees of the pure components in the
KCl—NaCl system at the temperature of 1100 K are ayxc¢ =0.97 and
@ nact = 0.49. The corresponding values in the KF—LIiF system at the tem-
perature of 1300 K are ayr = 0.985 and ay,;z = 0.175. These values comply
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with the fact that the component with smaller radius of the cation, i.e. with
higher electronegativity, is always less dissociated in a molten mixture. This
means that the cations with higher field strength (the charge to radius ratio) bind
the surrounding anions stronger and, consequently, exhibit a greater tendency
to formation of the ionic pairs or associates. The dissociation of the component
in the molten mixture is then affected by the properties of the second com-
ponent. Thus, e.g. the dissociation degree of NaCl in the mixtures with LiCl and
KCl, respectively, will be probably different. Then it can be expected that the
value of the equilibrium constant of dissociation of the component will depend
on the system under investigation. This is understandable, because as a matter
of fact it is not possible to consider the formation of the ionic pairs only, but
in general the formation of the more complex clusters of the A, X"~ type with
a mobility substantially lower than is the mobility of “free’ ions. The average

0.98
0.5

kel
|
\\\\\
%NaCl

Fig. 3. Dependence of the dissociation 0.97
degree of KCl and NaCl on the com- 0.4
position in the KCl—NaCl system at ] L ] ]
the temperature of 1100 K. KCl 0.2 0.4 0.6 0.8 NaCl
O &kcis & Anuqr- x(NaCl)
1.00 T T T T
—0.2
w w
8¥ 0.99 8_'
—10.1
Fig. 4. Dependence of the dissociation
degree of KF and LiF on the com-
position in the KF—LIF system at the 0.98 1 ] I 1
temperature of 1300 K. KF 0.2 0.4 06 08 LiF
O Oyp; & Qup. x(LiF)
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magnitude of the clusters obviously depends also on the properties of the second
component. For each cluster of an arbitrary magnitude it is possible to write
formally the correspondent dissociation equation with the corresponding value
of the dissociation constant. For simplification of the calculation, in this work
the dissociation equations of the clusters were formally substituted by simple
eqns (A) and (B).

The dependences of the dissociation degrees of individual components on the
composition in the KCl-—NaCl and KF—LIiF systems are shown in Figs. 3 and
4. It can be seen that the dissociation degree of the more dissociated component
slightly increases with increasing content of the second component whereas an
opposite tendency is observed for the less dissociated component. The observed
dependences also point to the fact that the dissociation of the given component
in the mixture is strongly affected by the properties of the added “foreign” ion.
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