Phase diagram of the system LiF—NaF—Na₂SO₄ and its thermodynamic analysis I. Experimental investigation of the phase diagram

J. GABČOVÁ and P. FELLNER

Department of Inorganic Technology, Faculty of Chemical Technology, Slovak Technical University, CS-81237 Bratislava

Received 31 January 1989

Phase equilibria solidus—liquidus in the system LiF—NaF—Na₂SO₄ were determined by the method of thermal analysis. A congruently melting compound of stoichiometric composition Na₃FSO₄ is formed in the system NaF—Na₂SO₄. Composition of investigated mixtures was chosen with respect to thermodynamic analysis of the system. From this point of view the systems LiF—Na₃FSO₄ and LiF—Na₂SO₄ are of special interest. The former one contains a compound which partly dissociates under melting and in the latter system a region of primary crystallization of Na₃FSO₄ occurs.

С помощью метода термического анализа определены фазовые равновесия между солидусом и ликвидусом в системе LiF—NaF— $-Na_2SO_4$. Конгруэнтно плавящееся соединение стехиометрического состава Na_3FSO_4 образуется в системе $NaF-Na_2SO_4$. Состав изучаемых смесей был выбран с учетом термодинамического анализа системы. С этой точки зрения особый интерес представляют системы LiF— Na_3FSO_4 и LiF— Na_2SO_4 . Первая из них содержит соединение частично диссоциирующее при плавлении, а во второй системе наблюдается область первичной кристаллизации Na_3FSO_4 .

Ternary system LiF—NaF—Na₂SO₄ is a part of reciprocal system Li⁺, Na⁺ \parallel F⁻, SO₄²⁻. It contains a congruently melting compound Na₃FSO₄ which partly dissociates under melting [1]. Existence of this compound allows to divide the system in question into two subsystems, *viz.* LiF—NaF—Na₃FSO₄ and LiF—Na₂SO₄—Na₃FSO₄. Special attention was paid to the binary systems LiF—Na₃FSO₄ and LiF—Na₂SO₄.

Phase diagram of the system LiF—Na₃FSO₄ has been studied by *Speranskaya* and *Bergman* [2]. The cited authors used a visual-polythermal method. They found that it is a simple eutectic system, composition of the eutectic point being 61.0 mole % LiF, 39.0 mole % Na₃FSO₄ and its temperature $T(E) = 890.15 \text{ K } (617 \,^{\circ}\text{C})$.

The system LiF—Na₂SO₄ has been studied by *Speranskaya* and *Bergman* [2] as a part of the reciprocal system Li⁺, Na⁺ \parallel F⁻, SO₄²⁻. According to their opinion it is an unstable diagonal characterized by the existence of two invariant

points e_1 , e_2 . The parameters of these points are as follows: $e_1 - 40.6$ mole % LiF, 59.4 mole % Na₂SO₄, $T(e_1) = 893.15$ K (620 °C); $e_2 - 55.6$ mole % LiF, 44.4 mole % Na₂SO₄, $T(e_2) = 861.15$ K (588 °C).

The ternary system LiF—NaF—Na₂SO₄ has not yet been studied in detail. The aim of this work was to obtain experimental data on phase equilibria in the ternary system LiF—Na₂SO₄ and pseudobinary systems LiF—Na₃FSO₄, LiF—Na₂SO₄ with precision required for thermodynamic analysis of these systems.

Experimental

Solidus—liquidus equilibrium was determined by the method of thermal analysis (cooling curves method). The chemicals used were of anal. grade (Lachema, Brno). Temperature of the sample was measured by PtRh10—Pt thermocouple. Comparing point (cool junction) of the thermocouple was kept at the temperature (25.00 ± 0.01) °C. Mass of the sample in platinum crucible was 20 g, rate of cooling did not exceed 2 K min⁻¹. The thermocouple was calibrated using the melting points of pure salts: NaF, θ (fus) = 993.5 °C (this standard was supplied by the Institute of Inorganic Chemistry, Centre for Chemical Research, Slovak Academy of Sciences, Bratislava); Na₂SO₄, θ (fus) = 884.8 °C [3]; NaCl, θ (fus) = 800.8 °C [3]; KCl, θ (fus) = 771.0 °C [3]. Besides, the melting temperatures of eutectic mixtures were used: KCl—K₂SO₄, θ (E) = 685.0 °C [4] and NaCl—Na₂SO₄, θ (E) = 628 °C [5]. Repeated measurements of temperature of primary crystallization of the same sample were in the interval narrower than 1 K.

Results and discussion

The system LiF—Na₃FSO₄

The results of experimental investigation of the solidus—liquidus equilibrium of the system LiF—Na₃FSO₄ are summarized in Table 1. (The experimental phase diagram will be presented in the second part of this series together with the calculated phase diagram.) It was confirmed in accord with paper [2] that the system in question is of simple eutectic type. However, composition of the eutectic point found in this work, *i.e.* 53.0 mole % LiF and 47.0 mole % Na₃FSO₄ ($\theta(E) = 619.5$ °C) differs remarkably from the literature data (61.0 mole % LiF, 39.0 mole % Na₃FSO₄). The eutectic temperature differs only by 2.5 K.

The results of thermal analysis of the system LiF—Na₂SO₄ are summarized in Table 2. (The phase diagram will be presented in Part II of this series.) This

Table 1

Dependence of the temperature of the primary crystallization θ_1 and of the second thermal arrest θ_2 on the composition of the system LiF—Na₃FSO₄

x(LiF)/%	$x(Na_3FSO_4)/\%$	θ_{1} /°C	θ_2 /°C
100 0		849.5	
99	1	838.0	615.0 615.5 615.5 617.0 619.5 619.0 619.5
98	2	831.5	
97 96	3	824.0	
	4	822.5	
95	5	812.0	
90	10	782.0	
85	15	762.5	
80 75	20	732.5	619.0
	25	711.5	618.0
70	30	681.5	619.0
65	35	669.0	619.0
60	40	646.5	620.0
57 56 55 54 53 52 51 50 45 40 35 30 25 20 15 10 5	43	634.5	620.0
	44	632.5	618.0
	45	630.0	619.0
	46	628.5	616.5
	47		619.5
	48	620.0	619.5
	49	623.0	619.5
	50	626.0	618.0
	55	648.5	620.0
	60	664.5	620.0
	65	686.0	620.0
	70	693.5	620.0
	75	711.5	619.0
	80	725.5	619.0
	85	737.5	615.5
	90	756.0	619.0
	95	773.5	615.5
	96	777.0	615.5
3	97	781.0	615.0
2	98	785.0	614.0
1	99	789.0	614.0
0 100		793.5	

system is an unstable diagonal of the ternary reciprocal system Li^+ , $Na^+ \parallel F^-$, SO_4^{2-} with three characteristic points:

 $e_1 - 44.5$ mole % LiF, 55.5 mole % Na₂SO₄, $\theta(e_1) = 604.0$ °C;

 $e_2 - 55.5$ mole % LiF, 44.5 mole % Na₂SO₄, $\theta(e_2) = 586.0$ °C;

Dependence of the temperature of the primary crystallization θ_1 , of the second thermal arrest θ_2 and third thermal arrest θ_3 on the composition of the system LiF—Na₂SO₄

θ ₃ /°C	1111	ıııi	569.5 567.5 568.5 568.5 1	568.0 568.0 568.0 568.0 568.5 568.5	567.5 567.5 567.5 567.5 569.5 569.5 569.5	567.5 567.5 568.5 570.5 570.5 569.5 569.5	568.5 566.0 566.5 565.0 565.0 565.0 559.0
θ ₂ /°C	705.0 698.0 692.5	682.5 674.0 667.0 660.5	659.0 654.5 648.5 623.0 613.0	606.2 604.0 605.0 599.5 1	600.0 574.0 573.0 571.5 577.5 580.0	583.0 586.5 586.5 586.5 586.5 586.5 586.5 583.5	581.0 579.5 578.0 577.0 576.0 573.0 561.0 561.0
η',οC	884.0 873.0 866.5 859.0	857.0 842.5 837.0 831.5	826.0 818.0 805.0 748.5 685.0 659.0	625.5 620.0 613.0 603.0 603.0	601.0 598.5 595.5 592.0 594.5 589.5	588.5 588.0 588.5 589.5 595.5 604.0 613.0 660.0	766.0 778.5 715.5 782.0 790.5 797.0 805.5 813.0 837.5 845.0
x(Na ₂ SO ₄)/%	100 99 98 97	96 95 93	92 90 90 90 90 90 90	55 57 58 58 58 58 58 58	53 50 50 48 88	5444444988	00 8
x(LiF)/%	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0400C	8 9 0 0 0 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9	3 4 4 4 4 4 4	74 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	96 6 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9

P - 49.0 mole % LiF, 51.0 mole % Na₂SO₄, $\theta(P) = 568.5$ °C.

It was confirmed that this system is of the type reported in literature [2]. However, composition and/or temperature of these points determined in this work differs remarkably from older data, which can be explained by the used experimental technique.

Sections of the phase diagram LiF—NaF—Na₂SO₄ were chosen for experimental investigation taking into account the existence of incongruently melting compound Na₃FSO₄ in the system. Ten sections of the first kind (constant ratio of components) and eight sections of the second kind (constant content of one component) were studied. Totally 138 mixtures were analyzed. The phase diagram of the system LiF—NaF—Na₂SO₄ is presented in Fig. 1. (Detailed tables

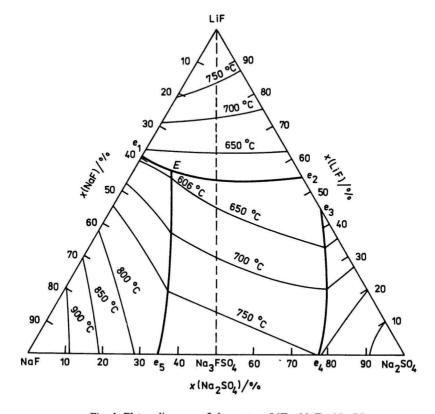


Fig. 1. Phase diagram of the system LiF—NaF—Na₂SO₄.

of experimental data will be supplied by authors on request.) It can be seen that there are four regions of primary crystallization in this phase diagram:

LiF— e_1 —E— e_2 (primary crystallization of LiF); NaF— e_1 —E— e_5 (primary crystallization of NaF); Na₂SO₄— e_3 — e_4 (primary crystallization of Na₂SO₄); e_2 —E— e_5 — e_4 — e_3 (primary crystallization of Na₃FSO₄).

The system LiF—NaF—Na₂SO₄ has one eutectic point. Its composition and temperature are as follows: 57.5 mole % LiF, 33.0 mole % NaF, 9.5 mole % Na₂SO₄, $\theta(E) = 606$ °C.

References

- 1. Koštenská, I. and Malinovský, M., Chem. Zvesti 36, 159 (1982).
- 2. Speranskaya, E. and Bergman, A. G., Izv. SFCHA 26, 180 (1955).
- Stull, D. R. and Prophet, H., JANAF Thermochemical Tables, 2nd Edition. Natl. Bur. Stand., Washington, 1971.
- 4. Janz, G. J., Molten Salts Handbook. Academic Press, New York, 1967.
- 5. Bergman, A. G. and Bakumskaya, E. L., Zh. Neorg. Khim. 25, 2405 (1955).

Translated by P. Feliner