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Acetylation of 2-acyl-1,3-indandiones with ketene was performed. There was found regio-
selective and quantitative O-acetylation, with formation of the corresponding 2-(1-acet-
oxyalkylidene)-1,3-indandiones. The structure of products was determined on the basis of 
data gained from 1H and 13C NMR spectra. 

2-Acyl-1,3-indandiones attracted the interest of 
chemists as early as forty years ago, since some 
of them exhibited remarkable physiological, in 
particular anticoagulant, properties and found use 
in practice as rodenticides [1—3]. Their chemical 
properties, however, have been scarcely studied. 
It is known for example that they exist in a diketo-
enol form. Nevertheless, existence of two struc
tures A and ß can be assumed, A representing 
enolization of an acyl carbonyl group and В an 
enol form of a carbonyl belonging to 1,3-indan-
dione skeleton. In both enol forms, stabilization 
via the hydrogen bond and formatton of a fa
voured six-membered ring is feasible. 

Evidence gained from the examination of IR 
spectra demonstrated the preference of the di-
ketoenol form A with an exocyclic enol arrange
ment [4]. Studying properties of cyclic 1,3-di-
ketones, we were interested lately in their acyla-
tion with various acylating agents, as in some 
cases their behaviour is different from that of 
acyclic 1,3-diketones. 

In this paper, our results obtained from acetyla
tion of 2-acyM ,3-indandiones (acyl = acetyl /, 
propionyl //, isovaleryl ///, pivaloyl IV, benzoyl V) 
with ketene are presented. From the theoretical 
point of view, acetylation of 2-acyM ,3-indan-

R 11-14 

I- V 

diones can possibly afford a product of C-acetyla-
tion at C-2 atom of the indandtone moiety and 
two products of O-acetylation: either at an oxygen 
of the carbonyl group which forms a part of the 
indandione skeleton or at an oxygen atom of the 
substituent. It is worth mentioning that acylations 
of 2-acyM ,3-indandiones have not been perform
ed so far. The acetylation with ketene carried out 

Table 1. Characteristic Data of Synthesized 2-(1-Acetoxyalkylidene)-1,3-indandiones VI—X 

Compound 

W 

VII 

VIII 

IX 

X 

R 

сн3 

CH3CH2 

(СНз)2СНСН2 

(СНз)3С 

с в н 5 

Formula 

И 
с 1 3 н 1 0 о 4 

23022 
с 1 4 н 1 2 о 4 

24424 
с 1 в н 1 в о 4 

272.30 
CieH i e04 

272.30 
с 1 8 н 1 2 о 4 

29228 

М.р. 

°С 

93—95 

73—75 

77—78 

107—111 

98—100 

я,в 

0.72 

0.80 

0.88 

0.88 

0.60 

ŕ 

min 

130 

150 

140 

300 

60 

vjp=öf 
1688 

1686 

1692 

1686 

1686 

v/cm 1 

v.(C=0) c 

1732 

1734 

1732 

1730 

1732 

v(COO)c 

1776 

1778 

1788 

1776 

1774 

a) Eluent: petroleum ether—ethyl acetate ( ^ = 2 :1); о) the reaction time, c) Spectra were taken in CHCI3,0.1 mm NaCI cells. 
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by us gives quantitative yield of the single product 
of the reaction. 

The course of the reaction was monitored by 
TLC. IR and 1H NMR spectra of the product 
revealed O-acetylation. Determination of the di
rection of acetylation — to the oxygens of 1,3-
indandione carbonyls (C) or to the oxygen of an 
acyl group (D) — proved to be a more complex 

OCOCH, 

vi-x 
D 

problem. IR and 1H NMR spectra of both types 
of compounds are quite similar (Tables 1 and 2). 
Certain clue to the solution of a problem can lie 
in comparison of chemical shifts of the aromatic 
protons of 1,3-indandione (X/) (1H NMR spectrum 
taken in CDCI3, a solvent in which this compound 
is in a diketo form), 2-acyl-1,3-indandiones /—V, 
the products of their acetylation with ketene (W—X), 
and 3-acetoxy-2-inden-1-one {XII) prepared for 
the sake of comparison according to the de
scribed procedure [5]. Almost identical chemical 
shifts of multiplets of aromatic protons (Table 2) 
of / — I / , structure A (S = 7.43—8.17), and their 
O-acetylated derivatives VI—X (S = 7.43—8.07) 
indicate their mutual structural likeness which is 
comparable with the diketo arrangement of the 
unsubstituted 1,3-indandione (X/) (8 = 7.70—8.20). 

Table 2. 1H NMR Spectral Data (8j of Compounds I—XII 

On the other hand, the multiplet of aromatic pro
tons of the model compound XII, the structure of 
which represents a ketoenol form of 1,3-indan-
dtone trapped by acetyl group, is shifted to the 
value of 8 = 7.20—7.46. 

For the unambiguous determination of the struc
ture of VI—X, their 13C NMR spectra as well as 
those of the starting compounds /—V served 
much better than the 1H NMR spectra (Table 3). 
Should the acetylation of /—V take place at the 
oxygen of 1,3-indandione carbonyls (C), the sig
nal of the carbonyl C-10 must be present in the 
spectra of VI—X and its chemical shift would be 
strongly affected by the substituent R which is in 
a close vicinity of this carbonyl group. 13C NMR 
spectra of compounds VI—X possess two signals 
of C-1 and C-3 characteristic of the carbonyl 
carbons. Chemical shifts of these carbon atoms 
are almost identical (8 = 189 and 187) for all the 
compounds. Unchanged position of these two 
signals apparently indicates remoteness of both 
carbonyl carbon atoms from the influence of the 
substituent R and therefore it confirms the struc
ture D for all the acetylated compounds. On the 
other hand, a signal belonging to sp2 hybridized 
carbon C-10 is found in the spectra of products 
VI—X. Its position is greatly influenced by the 
substituent R directly connected to the sp2 carbon 
atom. Chemical shift of this carbon atom is de
pendent on the substituent in an analogous way 
also with the starting compounds /—V, structure A. 

The further evidence, supporting the idea of 
direction of acetylation, i.e. the structure D, 2-(1-
acetoxyalkylidene)-1,3-indandiones VI—X, comes 
from the downward tendency of differences be-

Compound 

/ 

II 

III 

IV 

V 

VI 

VII 

VIII 

IX 

X 

Herom 

7.80—8.00 
(m, 4H) 

7.46—7.91 
(m,4H) 

7.50—7.91 
(m, 4H) 

7.45-7.85 
(m, 4H) 

7.43-8.17 
(m, 9H) 

7.70—7.98 
(m, 4H) 

7.60—8.00 
(m,4H) 

7.60—8.07 
(m, 4H) 

7.57—8.02 
(m, 4H) 

7.43-7.93 
(m,9H) 

2.71 
(s,3H) 
3.00 
(q,2H,J = 
2.86 
(d,2H,J = 
1.43 
(s,9H) 

2.63 
(s,3H) 
3.08 
(q.2H,J = 
3.00 
(d,2H,J = 
1.43 
(s, 9H) 

:7 Hz) 

:7 Hz) 

:7HZ) 

= 7 Hz) 

Häkyl 

-

1.28 
(t,3H,J = 7 
2.16 
(m, 1H) 

123 
(t,3H,J = 7 
2.06 
(m,1H) 

Hz) 

Hz) 

-

-

1.04 
(d,6H,J = 

" 

-

1.04 
(d, 6H, J = 

:7HZ) 

= 7 Hz) 

Henol 

12.73 
(s,1H) 
12.87 

(s,1H) 
12.21 

(s,1H) 
16.00 

(s,1H) 
13.87 

(s,1H) 

-

— 

~ 

^ 2 A 

-

-

-

2.41 
(s, 3H) 

2.42 
(s, 3H) 

2.41 
(s, 3H) 

2.43 
(s, 3H) 

2.47 
(s, 3H) 

Compound ХУ: 7.70—8.20 (m, 4H), 3.20 (s, 2H). Compound XII: 720—7.46 (m, 4H), 6.02 (s, 1H), 2.40 (s, 3H). 
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Carbon 

C-1 
C-2 
C-3 
C-4 
C-5 
C-6 
C-7 
C-8 
C-9 

C-10 
C-11 
C-12 
C-13 
C-14 
C-1A 
C-2A 

/ 
196.8 
108.9 
188.5 
122.5 
134.1 
135.0 
122.7 
140.8 
138.1 
183.7 

192 
-
— 
— 
-

II 

197.1 
108.0 
188.4 
122.4 
134.0 
134.9 
122.7 
140.8 
138.3 
1882 

25.9 
10.1 
— 
— 
-

Ill 

197.1 
109.1 
1882 
122.4 
134.0 
134.9 
122.7 
140.9 
138.2 
187.0 

27.6 
40.9 
22.6 

— 
-

IV 

199.1 
107.1 
186.9 
122.1 
133.6 
134.8 
122.6 
139.7 
137.4 
198.4 

39.8 
262 

— 
— 
-

V 

198.8 
107.6 
186.5 
122.3 
134.1 
1352 
122.8 
140.1 
137.8 
179.5 
131.3 
130.3 
128.0 
133.6 

-

VI 

189.5 
119.8 
1872 
123.1 
135.1 
135.3 
1232 
141.4 
140.5 
166.9 

19.8 
-
-
— 

167.7 
21.0 

W/ 

189.3 
118.9 
187.5 
1232 
135.1 
135.3 
1232 
141.4 
140.7 
171.9 

26.1 
102 
-
— 

167.0 
21.0 

VIII 

1892 
119.9 
1872 
123.1 
135.0 
1352 
123.1 
141.3 
140.5 
170.5 

27.5 
40.9 
22.6 

— 
166.7 

21.0 

IX 

188.5 
120.3 
187.3 
123.0 
134.9 
135.0 
123.0 
141.0 
140.4 
179.3 

39.7 
26.9 
-
— 

167.0 
20.8 

X 

188.1 
119.0 
187.1 
123.0 
135.3 
135.3 
123.2 
140.9 
140.7 
1632 
131.8 
130.6 
128.0 
132.8 
167.4 

21.1 

XI 

1972 
45.0 

1972 
123.1 
135.5 
135.5 
123.1 
143.4 
143.4 

-
-
— 
-
— 
-
_ 

XII 

195.7 
107.9 
167.6 
1302 
118.8 
122.0 
132.8 
1402 
130.6 

-
-
— 
-
— 

166.3 
21.5 

2-ACYL-1.3-INDANDIONES 

Table 3. 13C NMR Spectral Data (<5) of Compounds l-XII 

tween the chemical shifts of parallel aromatic 
carbon atoms in indandione skeleton of acetylated 
compounds (Table 4) in comparison with the 
starting 2-acyl-1,3-indandiones or 3-acetoxy-2-
inden-1-one (XII). 

Such a trend indicates that the environment 
accounting for nonequivalency of these carbon 
atoms is far away from them with its diminished 
influence as a consequence. 

Experimental results demonstrate approximately 
2.5 times extended reaction period for acetylation 
of 2-pivaloyl-1,3-indandione (IV) with ketene. This 
can be explained by bulkiness of the ŕert-butyl 
group which hinders an approach of ketene to 
the oxygen atom of the enolic hydroxyl group. 
Such experimental finding corresponds best to 
the structure A of the starting 2-acyl-1,3-indan-
diones as well as to the reaction site. 

Finally, we can conclude that 2-acyl-1,3-indan-
diones /—V react with ketene regioselectively 
under formation of 2-(1-acetoxyalkylidene)-T,3-
indandiones VI—X as the only products. 

EXPERIMENTAL 

Starting 2-acyl-1,3-indandiones /—V were syn
thesized according to the published procedure 
[1]. Prior to use they were recrystallized from 
ethanol. 1,3-lndandione wa.- purified by sublima
tion under reduced pressure (80 °C/13 Pa/ 

Table 4. Differences of 13C NMR Chemical Shifts of Parallel 
Aromatic Carbon Atoms 

AS VI—X l—V XII 

SC-8-Sc-9 02—0.9 2.3—2.7 9.6 
Sc-7-«^ 0.0—0.2 02—0.5 2.6 
ScWc-e 0.0—02 0.9—1.1 3 2 

3-Acetoxy-2-inden-1-one (XII) as a model com
pound was prepared by acetylation of 1,3-indan-
dione with isopropenyl acetate [5]. 

Melting points were determined on a Kofler hot-
stage. NMR spectra were measured on an instru
ments BS-487 (80 MHz, Tesla) and VXR-300 
(Varian) with 299.93 MHz frequency for protons 
and 75.43 MHz frequency for carbon atoms in 
deuterated chloroform with TMS as an internal 
standard. IR spectra were taken on a Specord IR-80 
instrument in the region of v = 400—4000 cm"1 

in chloroform. The course of the reactions and 
their termination was monitored by TLC using 
Silufol UV-254 plates (Kavalier, Sázava, CSFR) with 
petroleum ether (b.p. = 30—55 °C)—ethyl acetate 
mixture as eluent. Ketene lamp producing 0.45 mol 
of ketene per hour described by Handford et al. 
[6] was used as a source of ketene. Any impurities 
were frozen out from it at - 45 °C. The reactions 
were carried out in a 100 cm3 flask equipped 
with a condenser, a sintered inlet tube for in
troducing ketene and a septum for withdrawal 
samples for TLC. 

2-(1-Acetoxyalkylidene)-1,3-indandiones VI—X 

Into a v* ition of 2-асуИ 3-indandione l—V (2 mmol) 
in chloroform (80 crrv ) Ketene was introduced at 
room temperature over a period given in Table 1. 
The solvent wab removed at room temperature and 
at a pressure of water pump and the last traces 
of volatile materials were removed at the pressure 
of 13 Pa. The oily residue was dissolved in a mix
ture of ether and petroleum ether and allowed to 
crystallize at - 20 °C. The precipitate was filtered 
off by suction, washed with petroleum ether and 
dried. In all cases the yields were quantitative. 
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2-Ethoxymethyleneamino-3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophene gave in the reaction 
with nitrogen nucleophiles corresponding formamidines that under heating cyclized to 
3-substituted 4-imino-5f6,7 l8-tetrahydrobenzo[b]thieno[2 l3-d]-3f4-dihydropyrimidines. These 
under a base catalysis underwent Dimroth rearrangement to 4-substituted 5,6,7,8-tetrahydro-
benzo[b]thieno[2,3-d]pyrimidines. 

2-Ethoxymethyleneamino-3-cyano-4,5,6,7-tetra-
hydrobenzo[b]thiophene (I) is mentioned in the 
paper [1] as a substrate in the reaction with meth-
ylamine and in the paper [2] its reaction with 

CXO R—NH, 

N * 2 I % 
OuG ̂

NHR 

employed for the preparation of a fused hetero
cyclic derivative — triazolo[2,3-c]pyrimidine. 

The aim of our work was to check the behaviour 
of / against a broader scale of nucleophile repre
sentatives and compare their reaction conditions. 

There are two reactive centres sensitive to nu-
cleophilic attack in the structure of used com-

R—N=C, SO' 2 — = ^~o-
NHR 

CXÓ 
IV 

a 
b 
с 
d 

он-

R 

СН9СН2 

Ph 
p-CH3Ph 
p-CH3OPh 

Scheme 1 

kj 
m 

p-N02Ph 
NH2 

PhNH 
NH=C(NH2) 

hydrazine hydrate leading to the product of the 
type of formamidines is described. This was then 

R2« Ph, p-CH3Ph, p-CH30Ph 

Scheme 2 

pound /. But in all our tested cases of the reaction 
of / with nitrogen nucleophiles the only attack on 
the double bond C=N was observed under for
mation of formamidines // (Scheme 1). The reac
tions were carried out with ethylamine, aniline, 
p-toluidine, p-anisidine, p-nitroaniline, hydrazine, 
Phenylhydrazine, guanidine, and urea. 

In case of the reaction of compound / with 
strong nucleophiles the formed formamidines (com
pounds llf—llh) could not be isolated because 
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