Acetylation of 2-Acyl-1,3-indandiones with Ketene and Determination of the Structure of Products

A. BOHÁČ, P. HRNČIAR, and J. ŠRAGA

Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, CS-842 15 Bratislava

Received 27 December 1990

Acetylation of 2-acyl-1,3-indandiones with ketene was performed. There was found regioselective and quantitative O-acetylation, with formation of the corresponding 2-(1-acetoxyalkylidene)-1,3-indandiones. The structure of products was determined on the basis of data gained from ¹H and ¹³C NMR spectra.

2-Acyl-1,3-indandiones attracted the interest of chemists as early as forty years ago, since some of them exhibited remarkable physiological, in particular anticoagulant, properties and found use in practice as rodenticides [1-3]. Their chemical properties, however, have been scarcely studied. It is known for example that they exist in a diketoenol form. Nevertheless, existence of two structures *A* and *B* can be assumed, *A* representing enolization of an acyl carbonyl group and *B* an enol form of a carbonyl belonging to 1,3-indandione skeleton. In both enol forms, stabilization *via* the hydrogen bond and formation of a fa-voured six-membered ring is feasible.

Evidence gained from the examination of IR spectra demonstrated the preference of the diketoenol form A with an exocyclic enol arrangement [4]. Studying properties of cyclic 1,3-diketones, we were interested lately in their acylation with various acylating agents, as in some cases their behaviour is different from that of acyclic 1,3-diketones. In this paper, our results obtained from acetylation of 2-acyl-1,3-indandiones (acyl = acetyl *I*, propionyl *II*, isovaleryl *III*, pivaloyl *IV*, benzoyl *V*) with ketene are presented. From the theoretical point of view, acetylation of 2-acyl-1,3-indan-

diones can possibly afford a product of *C*-acetylation at C-2 atom of the indandione moiety and two products of *O*-acetylation: either at an oxygen of the carbonyl group which forms a part of the indandione skeleton or at an oxygen atom of the substituent. It is worth mentioning that acylations of 2-acyl-1,3-indandiones have not been performed so far. The acetylation with ketene carried out

Compound	R	Formula	M.p.	0.4	ť	<i>v</i> ∕cm ⁻¹		
		M,	°C	H ₁ *	min	v _{as} (C==O)°	v _s (C==O) ^c	v(COO)
VI	CH3	C ₁₃ H ₁₀ O₄ 230.22	93—95	0.72	130	1688	1732	1776
VII	CH₃CH₂	C ₁₄ H ₁₂ O ₄ 244.24	73—75	0.80	150	1686	1734	1778
VIII	(CH ₃) ₂ CHCH ₂	C ₁₆ H ₁₆ O ₄ 272.30	77—78	0.88	140	1692	1732	1788
IX	(CH₃)₃C	C ₁₆ H ₁₆ O ₄ 272.30	107—111	0.88	300	1686	1730	1776
x	C ₆ H₅	C ₁₈ H ₁₂ O ₄ 292.28	98100	0.60	60	1686	1732	1774

Table 1. Characteristic Data of Synthesized 2-(1-Acetoxyalkylidene)-1,3-indandiones VI-X

a) Eluent: petroleum ether — ethyl acetate (q, = 2 : 1); b) the reaction time. c) Spectra were taken in CHCI₃, 0.1 mm NaCl cells.

by us gives quantitative yield of the single product of the reaction.

The course of the reaction was monitored by TLC. IR and ¹H NMR spectra of the product revealed O-acetylation. Determination of the direction of acetylation — to the oxygens of 1,3-indandione carbonyls (C) or to the oxygen of an acyl group (D) — proved to be a more complex

problem. IR and ¹H NMR spectra of both types of compounds are guite similar (Tables 1 and 2). Certain clue to the solution of a problem can lie in comparison of chemical shifts of the aromatic protons of 1.3-indandione (XI) (¹H NMR spectrum taken in CDCl₃, a solvent in which this compound is in a diketo form), 2-acyl-1,3-indandiones I-V, the products of their acetvlation with ketene (VI - X). and 3-acetoxy-2-inden-1-one (XII) prepared for the sake of comparison according to the described procedure [5]. Almost identical chemical shifts of multiplets of aromatic protons (Table 2) of I---V, structure A (δ = 7.43---8.17), and their O-acetylated derivatives VI—X ($\delta = 7.43$ —8.07) indicate their mutual structural likeness which is comparable with the diketo arrangement of the unsubstituted 1,3-indandione (XI) (δ = 7.70–8.20).

Table 2. ¹H NMR Spectral Data (a) of Compounds I-XII

On the other hand, the multiplet of aromatic protons of the model compound XII, the structure of which represents a ketoenol form of 1,3-indandione trapped by acetyl group, is shifted to the value of $\delta = 7.20$ —7.46.

For the unambiguous determination of the structure of VI-X, their ¹³C NMR spectra as well as those of the starting compounds I-V served much better than the ¹H NMR spectra (Table 3). Should the acetylation of I-V take place at the oxygen of 1,3-indandione carbonyls (C), the signal of the carbonyl C-10 must be present in the spectra of VI-X and its chemical shift would be strongly affected by the substituent R which is in a close vicinity of this carbonyl group. ¹³C NMR spectra of compounds VI-X possess two signals of C-1 and C-3 characteristic of the carbonyl carbons. Chemical shifts of these carbon atoms are almost identical (δ = 189 and 187) for all the compounds. Unchanged position of these two signals apparently indicates remoteness of both carbonyl carbon atoms from the influence of the substituent R and therefore it confirms the structure D for all the acetylated compounds. On the other hand, a signal belonging to sp² hybridized carbon C-10 is found in the spectra of products VI-X. Its position is greatly influenced by the substituent R directly connected to the sp² carbon atom. Chemical shift of this carbon atom is dependent on the substituent in an analogous way also with the starting compounds I-V, structure A.

The further evidence, supporting the idea of direction of acetylation, *i.e.* the structure D, 2-(1-acetoxyalkylidene)-1,3-indandiones VI - X, comes from the downward tendency of differences be-

Compound	Harom		H _{aikyt}		H _{enol}	H _{2A}
ī	7.80-8.00	2.71	_	_	12.73	
	(m, 4H)	(s, 3H)			(s, 1H)	
11	7.46-7.91	3.00	1.28	-	12.87	
	(m, 4H)	(q, 2H, J = 7 Hz)	(t, 3H, J = 7 Hz)		(s, 1H)	
111	7.50-7.91	2.86	2.16	1.04	12.21	_
	(m, 4H)	(d, 2H, J = 7 Hz)	(m, 1H)	(d, 6H, J = 7 Hz)	(s, 1H)	
IV	7.45-7.85	1.43	-	—	16.00	-
	(m, 4H)	(s, 9H)			(s, 1H)	
V	7.43-8.17	_	-	—	13.87	
	(m, 9H)				(s, 1H)	
VI	7.70-7.98	2.63	_	-	—	2.41
	(m, 4H)	(s, 3H)				(s, 3H)
VII	7.60-8.00	3.08	1.23	=	-	2.42
	(m, 4H)	(q, 2H, J = 7 Hz)	(t, 3H, J = 7 Hz)			(s, 3H)
VIII	7.60-8.07	3.00	2.06	1.04	-	2.41
	(m, 4H)	(d, 2H, J = 7 Hz)	(m, 1H)	(d, 6H, <i>J</i> = 7 Hz)		(s, 3H)
IX	7.57-8.02	1.43	-	-	-	2.43
	(m, 4H)	(s, 9H)				(s, 3H)
X	7.43-7.93	-	—	-	-	2.47
	(m, 9H)					(s, 3H)

Compound XI: 7.70-8.20 (m, 4H), 3.20 (s, 2H). Compound XII: 7-20-7.46 (m, 4H), 6.02 (s, 1H), 2.40 (s, 3H).

Table 3.	¹³ C NMR	Spectral	Data	(δ)	of	Compounds	I-XII
----------	---------------------	----------	------	-----	----	-----------	-------

Carbon	1	11	III	IV	V	VI	VII	VIII	IX	x	XI	ХІІ
C-1	196.8	197.1	197.1	199.1	198.8	189.5	189.3	189.2	188.5	188.1	197.2	195.7
C-2	108.9	108.0	109.1	107.1	107.6	119.8	118.9	119.9	120.3	119.0	45.0	107.9
C-3	188.5	188.4	188.2	186.9	186.5	187.2	187.5	187.2	187.3	187.1	197.2	167.6
C-4	122.5	122.4	122.4	122.1	122.3	123.1	123.2	123.1	123.0	123.0	123.1	130.2
C-5	134.1	134.0	134.0	133.6	134.1	135.1	135.1	135.0	134.9	135.3	135.5	118.8
C-6	135.0	134.9	134.9	134.8	135.2	135.3	135.3	135.2	135.0	135.3	135.5	122.0
C-7	122.7	122.7	122.7	122.6	122.8	123.2	123.2	123.1	123.0	123.2	123.1	132.8
C-8	140.8	140.8	140.9	139.7	140.1	141.4	141.4	141.3	141.0	140.9	143.4	140.2
C-9	138.1	138.3	138.2	137.4	137.8	140.5	140.7	140.5	140.4	140.7	143.4	130.6
C-10	183.7	188.2	187.0	198.4	179.5	166.9	171.9	170.5	179.3	163.2	-	_
C-11	19.2	25.9	27.6	39.8	131.3	19.8	26.1	27.5	39.7	131.8	—	-
C-12		10.1	40.9	26.2	130.3	-	10.2	40.9	26.9	130.6		—
C-13	-	-	22.6	-	128.0		-	22.6	—	128.0	—	
C-14	-	_	_	-	133.6	_	-	_	-	132.8	-	_
C-1A	-	-	_	_	-	167.7	167.0	166.7	167.0	167.4	-	166.3
C-2A	-		-	-	-	21.0	21.0	21.0	20.8	21.1	-	21.5

tween the chemical shifts of parallel aromatic carbon atoms in indandione skeleton of acetylated compounds (Table 4) in comparison with the starting 2-acyl-1,3-indandiones or 3-acetoxy-2-inden-1-one (XII).

Such a trend indicates that the environment accounting for nonequivalency of these carbon atoms is far away from them with its diminished influence as a consequence.

Experimental results demonstrate approximately 2.5 times extended reaction period for acetylation of 2-pivaloyl-1,3-indandione (IV) with ketene. This can be explained by bulkiness of the *tert*-butyl group which hinders an approach of ketene to the oxygen atom of the enolic hydroxyl group. Such experimental finding corresponds best to the structure A of the starting 2-acyl-1,3-indandiones as well as to the reaction site.

Finally, we can conclude that 2-acyl-1,3-indandiones I - V react with ketene regioselectively under formation of 2-(1-acetoxyalkylidene)-1,3indandiones VI - X as the only products.

EXPERIMENTAL

Starting 2-acyl-1,3-indandiones I-V were synthesized according to the published procedure [1]. Prior to use they were recrystallized from ethanol. 1,3-Indandione was purified by sublimation under reduced pressure (80 °C/13 Pa)

 Table 4.
 Differences of ¹³C NMR Chemical Shifts of Parallel Aromatic Carbon Atoms

$\Delta\delta$	VI—X	<i>I—V</i>	XII	
$\delta_{C-8} - \delta_{C-9}$	0.2-0.9	2.3-2.7	9.6	
$\delta_{C-7} - \delta_{C-4}$	0.0-0.2	0.2-0.5	2.6	
$\delta_{C-6} - \delta_{C-6}$	0.0-0.2	0. 9 —1.1	3.2	

3-Acetoxy-2-inden-1-one (XII) as a model compound was prepared by acetylation of 1,3-indandione with isopropenyl acetate [5].

Melting points were determined on a Kofler hotstage. NMR spectra were measured on an instruments BS-487 (80 MHz, Tesla) and VXR-300 (Varian) with 299.93 MHz frequency for protons and 75.43 MHz frequency for carbon atoms in deuterated chloroform with TMS as an internal standard. IR spectra were taken on a Specord IR-80 instrument in the region of $\tilde{v} = 400-4000 \text{ cm}^{-1}$ in chloroform. The course of the reactions and their termination was monitored by TLC using Silufol UV-254 plates (Kavalier, Sázava, CSFR) with petroleum ether (b.p. = 30-55 °C)-ethyl acetate mixture as eluent. Ketene lamp producing 0.45 mol of ketene per hour described by Handford et al. [6] was used as a source of ketene. Any impurities were frozen out from it at - 45 °C. The reactions were carried out in a 100 cm³ flask equipped with a condenser, a sintered inlet tube for introducing ketene and a septum for withdrawal samples for TLC.

2-(1-Acetoxyalkylidene)-1,3-indandiones VI-X

Into a solution of 2-acyl-1 3-indandione I-V (2 mmol) in chlorotorm (80 cm³) ketene was introduced at room temperature over a period given in Table 1. The solvent was removed at room temperature and at a pressure of water pump and the last traces of volatile materials were removed at the pressure of 13 Pa. The oily residue was dissolved in a mixture of ether and petroleum ether and allowed to crystallize at – 20 °C. The precipitate was filtered off by suction, washed with petroleum ether and dried. In all cases the yields were quantitative.

REFERENCES

- Kilgore, L. B., Ford, J. H., and Wolfe, W. C., Ind. Eng. Chem. 34, 494 (1942).
- 2. Hassal, C. H., Experientia 6, 462 (1950).
- Correll, J. J., Coleman, L. L., Long, S., and Willy, R. F., Proc. Soc. Exp. Biol. Med. 80, 139 (1952).
- Gren, E. J., Izv. Akad. Nauk Latv. SSR, Ser. Khim. 5, 600 (1965).
- 5. Šraga, J. and Hrnčiar, P., Chem. Papers 40, 807 (1986).
- Handford, W. E. and Sauer, J. C., Organic Reactions III, pp. 108—149. J. Wiley & Sons, New York, 1946.

Translated by J. Šraga

Reactions of 2-Ethoxymethyleneamino-3-cyano-4,5,6,7tetrahydrobenzo[b]thiophene with Nitrogen Nucleophiles

M. POTÁČEK and H. ZORNOVÁ

Department of Organic Chemistry, Faculty of Natural Sciences, Masaryk University, CS-611 37 Brno

Received 23 November 1990

2-Ethoxymethyleneamino-3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophene gave in the reaction with nitrogen nucleophiles corresponding formamidines that under heating cyclized to 3-substituted 4-imino-5,6,7,8-tetrahydrobenzo[b]thieno[2,3-d]-3,4-dihydropyrimidines. These under a base catalysis underwent Dimroth rearrangement to 4-substituted 5,6,7,8-tetrahydrobenzo[b]thieno[2,3-d]pyrimidines.

2-Ethoxymethyleneamino-3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophene (/) is mentioned in the paper [1] as a substrate in the reaction with methylamine and in the paper [2] its reaction with

hydrazine hydrate leading to the product of the type of formamidines is described. This was then

employed for the preparation of a fused heterocyclic derivative — triazolo[2,3-c]pyrimidine.

The aim of our work was to check the behaviour of *I* against a broader scale of nucleophile representatives and compare their reaction conditions.

There are two reactive centres sensitive to nucleophilic attack in the structure of used com-

Scheme Z

pound *I*. But in all our tested cases of the reaction of *I* with nitrogen nucleophiles the only attack on the double bond C=N was observed under formation of formamidines *II* (Scheme 1). The reactions were carried out with ethylamine, aniline, p-toluidine, p-anisidine, p-nitroaniline, hydrazine, phenylhydrazine, guanidine, and urea.

In case of the reaction of compound *I* with strong nucleophiles the formed formamidines (compounds *IIf—IIh*) could not be isolated because