known from literature [10—12], was 80.9 %, 59.4 %, and 84.0 %, respectively.

Acknowledgements. Our thanks are due to colleagues of the Laboratory of Elemental Analysis (Head Dr. E. Greiplová) and to Associate Professor RNDr. A. Perjéssy, DrSc. (Department of Organic Chemistry) for IR spectra.

REFERENCES

- 1. Sutoris, V., Mikulášek, S., Sekerka, V., and Konečný, V., *Czechoslov.* 252502 (1989).
- 2. D'Amico, J. J., U.S. 4049419; Chem. Abstr. 88, 17327 (1978).
- D'Amico, J. J., U.S. 4282029; Chem. Abstr. 95, 203933 (1981).

- Idemitsu Kosan Co., Japan 60105671 (1985); Chem. Abstr. 103, 160499t (1985).
- 5. Sidóová, E., Blanáriková, V., Mitterhauszerová, L., and Kráľová, K., *Czechoslov.* 270539 (1990).
- Gvozdjaková, A., Beňo, A., and Ringerová, M., Acta Fac. Rerum Nat. Univ. Comenianae (Chimia) 33, 137 (1985).
- 7. Sidóová, E., Czechoslov. 265776 (1989).
- 8. Šetlík, I., private communication.
- Inskeep, W. P. and Bloom, P. R., *Plant Physiol.* 77, 283 (1985).
- 10. Hunter, R. F. and Parken, E. R., J. Chem. Soc. 1935, 1755.
- Petitcolas, P. and Sureau, R. F. M., U.S. 2500093 (1950); Beilstein, Vol. 27, Supplement IV, p. 2709.
- 12. D'Amico, J. J. and Bollinger, F. G., *J. Heterocycl. Chem.* 25, 1601 (1988).

Translated by E. Sidóová

Benzothiazole Compounds XLI. Synthesis of 3-Alkoxycarbonyloxymethyl-2-benzothiazolinones

^aV. SUTORIS, ^bV. SEKERKA, and ^oV. KONEČNÝ

Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, CS-842 15 Bratislava

^bDepartment of Molecular Biology and Genetics, Faculty of Natural Sciences, Comenius University, CS-842 15 Bratislava

^cResearch Institute of Chemical Technology, CS-836 03 Bratislava

Received 24 September 1990

The reaction of 3-hydroxymethyl-2-benzothiazolinone with the esters of chloroformic acid afforded 3-alkoxycarbonyloxymethyl-2-benzothiazolinones. When tested on *Vicia sativa* L., *cv*. Solarka and *Triticum aestivum*, several derivatives showed growth-stimulating effects.

Some derivatives of 3-substituted 2-benzothiazolinones, prepared by alkylation of 2-hydroxybenzothiazole, have evidenced good growth-regulating activity [1, 2]. It was the aim of our work to synthesize 3-alkoxycarbonyloxymethyl-2-benzothiazolinones which we expected to have analogical effects. The starting compound, 3-hydroxymethyl-2-benzothiazolinone was prepared from 2hydroxybenzothiazole and formaldehyde in ethanol [3]. 3-Hydroxymethyl-2-benzothiazolinone in acetone reacted with the esters of chloroformic acid in the presence of triethylamine affording 3alkoxycarbonyloxymethyl-2-benzothiazolinones. These compounds dissolved in methanol showed low absorption in the UV spectra at $\lambda = 280$ and 286 nm (log $\varepsilon \approx 2.4 \text{ m}^2 \text{ mol}^{-1}$) and much higher absorption at $\lambda = 216 \text{ nm}$ (log $\varepsilon \approx 3.4 \text{ m}^2 \text{ mol}^{-1}$). The position and intensity of the absorption bands are very little influenced by changing the alkyl in ester group.

The growth-regulating activity of the synthesized compounds (Table 1) was studied on *Vicia sativa* L., *cv*. Solarka and on *Triticum aestivum*. It was found that compounds 3-methoxy- (/), 3-ethoxy- (//), 3-(2-chloroethoxy)- (///), and 3-propargyloxy-carbonyloxymethyl-2-benzothiazolinone (*VI*) showed

Table 1. Characterization of the Synthesized Compounds

Compound	R	Formula	M _r	w _i (calc.)/% w <u>(</u> found)/%				Yield/%	6 M.p./℃
				С	Н	N	S	1	Solvent (φ_r)
1	CH3	C₁₀H₀NO₄S	239.25	50.25	3.79	5.86	13.41	42	77—80
	Contraction and a second			50.09	3.84	5.79	13.24		Ether-PE* (1:1)
"	C₂H₅	C ₁₁ H ₁₁ NO ₄ S	253.25	52.22	4.37	5.53	12.67	31	71—73
				52.40	4.45	5.47	12.72		Ether-PE (1:1)
<i>III</i>	C₂H₄CI	C11H10CINO4S	287.72	45.92	3.50	4.86	11.14	33	64-66
				45.86	3.47	4.77	11.31		Ether—PE (1:1)
IV	C ₃ H ₇	C ₁₂ H ₁₃ NO ₄ S	267.30	53.98	4.90	5.24	12.00	30	63-65
				53.68	4.84	5.08	11.99		Ether
v	i-C₃H7	C ₁₂ H ₁₃ NO ₄ S	267.30	53.98	4.90	5.24	12.00	36	6 9 —72
				53.60	4.86	5.13	12.15		Ether—PE (1:1)
VI	CH₂C==CH	C ₁₂ H ₉ NO₄S	263.17	54.75	3.44	5.31	12.17	31	5556
				54.47	3.41	5.19	12.30		Ether-PE (1:1)
VII	i-C₄H₀	C13H15NO4S	281.33	55.56	5.37	4.97	11.40	38	72—74
				55.26	5.35	4.83	11.43		Ether
VIII	C ₆ H ₁₃	C15H19NO4S	309.38	58.24	6.16	4.52	10.36	37	Viscous liquid
				58.02	6.28	4.64	10.61		
IX	cyclo-C ₅ H ₉	C14H15NO4S	293.34	57.38	5.15	4.78	10.94	42	64—66
				57.24	5.09	4.65	10.93		Ether-PE (1:1)
x	C₀H₅	C ₁₅ H ₁₁ NO₄S	301.32	59.85	3.68	4.65	10.65	46	38-42
				59.74	3.95	4.97	10.92		Ether—PE (3 : 2)
XI	CH₂C ₆ H₅	C ₁₆ H ₁₃ NO₄S	315.35	60.94	4.15	4.44	10.16	42	43—46
				61.08	4.22	4.21	10.40		Ether-PE (4:1)

<u>∼ ,s</u>

*PE — petroleum ether.

good inhibitory activity, particularly on *Vicia sativa*, at a concentration of 10^{-3} mol dm⁻³. On the other hand, compounds 3-propoxy- (*IV*), 3-isobutoxy-(*VII*), and 3-cyclopentyloxycarbonyloxymethyl-2-benzothiazolinone (*IX*) exhibited highly significant stimulating activity at a concentration of 10^{-7} mol dm⁻³ (Table 2). The level of significance determined for compounds *VII* and *IX* (Table 3) is complementary to the data obtained in the basic screening.

hibitory effects (Table 4). However, they were not tested on *Vicia sativa* L.

Table 2.	Growth-Regulating	Activity of the Synthesized
	Compounds Tested	on Vicia sativa L., cv. Solarka

Composi		imulatio	n	Inhibition			
Compou	c	Δ	لک	c	- <i>Δ</i>	- Δ	
	mol dm ⁻³	mm	%	moł dm ^{- s}	mm	%	
1	-	•-	-	10 ⁻³	22.18	68.46	
11	10-11	1.38	4.27		18.40	56.91	
111	10 ^{- 13}	2.42	7.95		18.62	61.21	
IV	10 ⁻⁷	3.17	10.07		12.18	38.70	
V	10-5	2.26	7.74		1.27	4.35	
VI	10 ⁻⁷	2.87	8.80		28.20	86.50	
VII	10 ⁻⁷	2.01	9.14	10 ⁻³	2.14	10.90	
IX	10 ⁻⁷	4.00	14.66	10-3	5.66	16.95	
IAA	10 ⁻¹²	3.10	12.99		18.55	77.78	
2,4-D	10 ⁻ °	4.95	20.00	10-5	23.30	94.15	
CCC			—	10 ⁻³	3.85	11.23	

 Table 3.
 Levels of Significance in the Tests of Compounds

 VII and IX on Vicia sativa L., cv. Solarka

The results of the tests on Triticum aestivum

are different. The compounds showed markedly

lower inhibitory activity. No stimulating activity at concentrations 10⁻³—10⁻¹¹ mol dm⁻³ was found

for 3-isobutoxy- (VII) as well as for 3-isopropoxy-

carbonyloxymethyl-2-benzothiazolinone (V). Com-

pounds 3-hexyloxy- (VIII) and 3-benzyloxycar-

bonyloxymethyl-2-benzothiazolinone (XI) showed

highly significant stimulating activity and no in-

Compound	c	l/mm		t		
Compound	mol dm ⁻³	x	s(x̄)	С	10-11	10 ⁻⁷
VII	С	27.89	± 0.72			
	10-11	29.73	± 0.91	1.586		
	10 ⁻⁷	30.44	± 0.83	2.321	0.576	
	10 ^{- 3}	27.64	± 0.55	0.276	1.965	3.808++
IX	10-11	30.90	± 0.99	2.459		
	10 ⁻⁷	31.98	± 1.14	3.033+	0.715	
	10 ⁻³	23.44	± 1.21	3.031+	4.487**	5.137**

I – growth of roots for 24 h; \bar{x} – arithmetical mean; $s(\bar{x})$ – standard error of arithmetical mean; t – significance; C – control; *P* = 0.05 – level of significance⁺ (2.78); *P* = 0.01 – level of high significance⁺⁺ (3.75).

 Table 4.
 Growth-Regulating Activity of the Synthesized Compounds Tested on Triticum aestivum

0	St	imulati	on	Inhibition			
Compound	c	۵۱ ۵۱		c	$-\Delta I - \Delta I$		
	mol dm ^{- s}	mm	%	mol dm ^{- s}	mm	%	
1	10 ⁻⁹	0.22	4.68	10 ^{- 3}	1.22	28.90	
11	10 ⁻⁷	0.24	5.10	10 ⁻³	0.89	18.94	
<i>III</i>	10 ⁻⁵	0.46	10.24	10 ⁻³	0.56	12.48	
IV	10-13	0.26	5.53	10 ⁻³	1.12	23.83	
V	-	-	_	10 ⁻³	0.76	16.18	
VI	10-5	0.36	8.01	10 ⁻³	1.14	25.39	
VII	_		_	10 ⁻³	0.62	13.81	
VIII	10 ⁻³	0.77	14.86	-	_	—	
IX	10-5	0.08	1.78	10 ^{- 3}	0.28	6.24	
X	10-5	0.34	7.76	10 ^{- 3}	0.25	5.71	
XI	10-5	0.78	15.05	<u></u>	_	_	
IAA	10-5	5.93	100.33	10-3	2.77	46.72	
2,4-D	10-5	2.56	51.09	10 ⁻³	2.01	40.12	
ccc				10 ⁻³	1.75	32.35	

EXPERIMENTAL

Melting points of the prepared compounds were determined on a Kofler block and are, together with elemental analysis data, presented in Table 1. UV spectra were measured on an instrument 8452 A (Hewlett—Packard) in methanol ($c = 5 \times 10^{-5}$ mol dm⁻³). The esters of chloroformic acid were synthesized from phosgene and alcohols [4].

Biological effects of the synthesized compounds were compared with growth-regulating activity of well known phytohormones (plant-growth regulators), β -indolylacetic acid (IAA) and 2,4-dichlorophenoxyacetic acid (2,4-D). The growth-regulating activity was assessed using a method [5] of stimulation and inhibition of root growth in *Vicia sativa* L., *cv.* Solarka and a coleoptile test for *Triticum* aestivum [6]. The inhibitory effects were compared with 2-chloroethyltrimethylammonium chloride (CCC). The tests were accomplished in five concentrations in the range of 10^{-3} — 10^{-13} mol dm⁻³.

3-Alkoxycarbonyloxymethyl-2-benzothiazolinones I—XI

To the solution of 3-hydroxymethyl-2-benzothiazolinone (18.1 g; 0.1 mol) in absolute acetone or THF (80 cm³) triethylamine (10.1 g; 0.1 mol) was added. Then alkyl chloroformate (9.4 g; 0.1 mol) was added dropwise with stirring. The reaction mixture was refluxed for 2 h and two thirds of the solvent were distilled off. The remainder was poured into ice water and the synthesized compound was extracted with ether. The ethereal solution was dried, concentrated to the volume of 60 cm³ and the same amount of petroleum ether was added. The products crystallized on cooling.

REFERENCES

- Sutoris, V., Mikulášek, S., Sekerka, V., and Konečný, V., Czechoslov. Appl. 252502 (1987).
- D'Amico, J. J., U.S. 4185990 (1979); Chem. Abstr. 92, 181168 (1980).
- 3. Zinner, H. and Nimmich, W., J. Prakt. Chem. 14, 139 (1961).
- Houben-Weyl, Methoden der Organischen Chemie, Vol. 8, p. 101. Thieme Verlag, Stuttgart, 1952.
- Sutoris, V., Sekerka, V., and Halgaš, J., *Czechoslov. Appl.* 225008 (1983).
- Šebánek, J., Sladký, Z., and Procházka, S., Experimentální morfologie rostlin. (Experimental Morphology of Plants.) P. 31. Academia, Prague, 1983.

Translated by J. Halgaš