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Charge distribution and the total energy of a CO molecule in the crystalline a-carbon monooxide has 
been calculated by the ab initio method within the 6-31G basis. Two approaches to this problem have 
been compared: calculation using the crystal orbital method and the cluster calculation considering 
one molecule and respecting the crystal environment by electrostatic approximation, using the model 
of point charges. It turned out that the electrostatic approximation supplemented by the Padé's 
extrapolation for infinite crystal dimensions, leads to a very good agreement with results obtained by 
the crystal orbital method. The advantage of the proposed approach is its general applicability to any 
kind of structure, in contrast to traditional Ewald techniques. 

Two basic approaches have been established to 
the quantum-chemical treatment of extended sys­
tems. The first one consists of crystal-orbital-type 
methods [1—4]. These methods, describing solids 
with the exact translational symmetry are consid­
ered as standard in the electronic structure calcu­
lations of three-dimensional crystalline solids. Vari­
ous methodological procedures are being applied 
depending on the nature of the problem studied. 
There exist quite successful attempts to adopt this 
method to describe amorphous and disordered 
systems and to study defects of the crystal struc­
ture. The unit cell is chosen large enough to in­
clude a whole set of disordered atoms and results 
are related to the system of periodically repeated 
unit cells [5]. In the case of crystal structure de­
fects (impurities in crystals, colour centres, vacan­
cies, etc.) the unit cell is chosen according to the 
concentration of the crystal perturbation [6]. 

In spite of the success of the above-mentioned 
methods the cluster approach is still used in elec­
tronic structure calculations of solids and it has its 
own fields of application. Good examples of this 
approach to electronic structure study of transi­
tion metal compounds are the works [7—10] and 
references cited therein. A complex ion as the 
prototype molecule and/or clusters representing 
a part of continuous structure are investigated here. 
Papers studying the influence of the surroundings 
on the transition metal ion itself have appeared 
[11]. Some modified cluster methods are used in 
investigating molecular crystals [12, 13], proton 
conductivity, defects and impurities in crystals [14] 

and modelling of acidic sites of zeolites [15]. Theo­
retical studies attempting to include effects of the 
surroundings on the electronic structure of simple 
ions, of which the crystal consists, also belong to 
the cluster approach group ([16] and references 
therein). 

A variety of reasons justify the use of cluster 
methods. The main reason is that the delocalized 
description provided by crystal-orbital-type meth­
ods does not represent a good base for the cal­
culation of the localized properties of crystals [17]. 
Most of the cluster approaches include the effect 
of surroundings into the Hamiltonian to the various 
degree of approximation. Such approximation is 
equivalent to the crystal-orbital calculation in the 
Г point of the к space, and its great advantage is 
the direct space representation of the wavefunction 
which is simpler to interpret. This procedure was 
applied to covalent clusters in Ref. [18]. Later, the 
method of molecular cluster embedded into the 
infinite crystal has appeared [19]. 

Heterodesmic crystals, molecular and/or ionic, 
represent the case of strictly localized electrons, 
where the cluster approach is fully justified. The 
strongest interaction here is the electrostatic in­
teraction, which is the long-range one as well. This 
fact originated several methods based on purely 
electrostatic approximation to the effect of sur­
roundings on the cluster studied. Detailed analy­
sis of such procedures is given by Ángyán in [13]. 
Noteworthy is his finding that the effective 
Schrödinger equation obtained in this way is for­
mally equivalent to the nonlinear Schrödinger equa-
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tions used in average reaction field theories of 
solvent effect. This has encouraged us to apply 
electrostatic models in amorphous system studies 
[20]. 

Although both approaches, crystal-orbital-type 
methods and cluster methods, are widely used in 
electronic structure calculations of solids, the di­
rect comparison of these two main approaches is 
still missing. The goal of this paper is to confront 
them for the case of small covalent system. A new 
extrapolation procedure for the infinite number of 
point charge shells is tested at the same time. 

METHOD 

The effect of the crystal structure on the elec­
tronic structure of a molecule is represented by 
electrostatic interactions. The influence of point 
charges from a crystal environment is included into 
the molecular Hamiltonian 

/ у fy 

where Ж° is the Hamiltonian of the isolated mol­
ecule, Q/ stands for the i-th point charge, fl,y is 
written for the distance from the point charge / to 
the electron y, /Vq, Ne and e are number of point 
charges, number of electrons and elementary 
charge, respectively. In the self-consistent charge 

iterative procedure the starting point charge set is 
taken from in vacuo calculation, similarly as in [13, 
21]. The choice of the point charge set is done in 
analogy with [18]. This set is divided into shells, 
the first of them consists of the point charges 
contained in the chosen unit cell neighbouring to 
the molecule (Fig. 1), the second shell was repre­
sented by point charges contained in unit cells 
surrounding the first shell, etc. (the total number 
of unit cells in n shells is (2n - 1)3). 

The unit cell (Fig. 1) is chosen in such a way as 
to have the same symmetry as is the symmetry of 
the ideal crystal (the lowered symmetry could cause 
additional nonphysical polarization). This unit cell 
is larger than the crystallographic one. Its replica­
tion in the'space along translation vectors causes 
that some positions are occupied twice or more, 
so the calculation procedure which increases 
number of shells contains a check for redundant 
positions. Only one molecule is then considered in 
one position of the space. 

The electronic structure of the system with the 
infinite number of shells was obtained by means 
of an extrapolation procedure. Padé approximants 
P(/, y) (for definition of the used symbols see the 
Appendix) are used to extrapolate calculated quan­
tities. The consistency of this procedure was tested 
by means of the semiempirical CNDO method [22]. 
Two sets of quantities are compared here. The first 
of them is obtained using Padé approximant ex­
trapolation for the number of shells n = 1, 2, 3, 4, 
and 5. The second one is a result of the cluster 

Fig. 1. The unit cell chosen for the electronic structure calculation of a-carbon monooxide molecule. All molecules except the 
central one are replaced by point charges. • Carbon, О oxygen. 
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calculation with modified diagonal elements of 
CNDO Hamiltonian. These were corrected for the 
interaction with point charge shells by means of 
Padé approximants: 

a-Carbon monooxide crystal was chosen as a 
testing system. It represents a molecular crystal in 
which the cluster calculation of the electronic struc­
ture is justified. Consequently, if any discrepan­
cies will occur they have to be ascribed to the 
crudeness of electrostatic interaction approxima­
tion and/or to the Padé approximant extrapolation 
scheme. The only condition for the testing proce­
dure to be efficient is the choice of polar testing 
system (if it is homomolecular) and a-carbon mono-
oxide crystal fulfils this condition. 

Moreover, the carbon monooxide molecule is 
known to belong to the group of problematical 
systems from the point of view of the Hartree—Fock 
method. In these systems a break-down of 
Koopmans theorem occurs and SCF procedure 
results in the bond polarity of the opposite sign 
[23]. It is therefore interesting to find out how these 
systems will behave after taking into account the 
effect of surroundings though on the electrostatic 
level only. 

The experimental geometry [24] was used in our 
calculations. The surrounding medium effects re­
stricted to the electrostatic interaction do not guar­
antee the correct prediction of the system geom­
etry, but the well known geometry supplied by point 
charges effects enables us to obtain electronic 
structure details of reasonable accuracy [13]. 

RESULTS AND DISCUSSION 

The elementary unit of a-carbon monooxide crys­
tal is primitive cubic. It contains four molecules 
and belongs to the space group P2^3 [24]. For the 
purpose of the outlined calculations we have cho­
sen the cubic unit cell with one molecule in its 
centre surrounded by other twelve molecules 
placed in the centres of edges. Point charges taken 
instead of these twelve neighbouring molecules 
represent the first shell. The symmetry of such unit 
cell is the same as the symmetry of the crystal 
(Fig. 1). The coordinates of atoms in the unit cell 
together with the structural data are collected in 
Table 1. 

Table 2 presents the total energies, core—lattice 
interaction energies and net carbon charges g(C) 
calculated for CO molecule in vacuo and/or sur­
rounded by 1, 2, and 3 shells of point charges. 
The table is completed by crystal orbital approach 
results [25] and by two Padé approximants of these 
three quantities. Both calculations, cluster approach 
and crystal orbital one are accomplished on ab 
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Table 1. The Coordinates of Atoms in the Cell Chosen for 
Computation 

Atom x 

С 0 
О ß 
C b 
О b + ß 
C -b 
O -b + ß 
C b 
O b + ß 
C -b 
0 -b + ß 
C b 
O b-ß 
с -ь 

У 

0 

ß 
b 

b-ß 
b 

b-ß 
-b 

-b-ß 
-b 

-b-ß 
0 

-ß 
0 

z 

0 
ß 
0 

-ß 
0 

-ß 
0 

-ß 
0 

-ß 
b 

b + ß 
b 

Atom 

О -
с 
О 

с 
О • 

с 
о 
с 
о 
с 
о 
с 
О 

X 

-b-ß 
b 

b-ß 
-b 

-b-ß 
0 

-ß 
0 

-ß 
0 

-ß 
0 

-ß 

У 

-ß 
0 

-ß 
0 

-ß 
b 

b + ß 
-b 

-b + ß 
b 

b + ß 
-b 

-b + ß 

z 

b + ß 
-b 

-b + ß 
-b 

-b + ß 
b 

b-ß 
b 

b-ß 
-b 

-b-ß 
-b 

-b-ß 

Lattice constant a = 0.563 nm, b = a/2 = 0.2815 nm, ß = 0.0615 
nm (ß = bond length/V3). 

initio level using 6-31G basis set which is equiva­
lent to the double-zeta Slater-type orbitals (STO) 
[26]. Crystal orbitals are calculated for Г point of 
the к space. In such a case the electronic struc­
ture of the a-carbon monooxide molecule is influ­
enced by the nonlocal potential originated from all 
the other molecules positioned in the rest of the 
infinite crystal. 

Table 2. Results of ab initio Computations of Electronic Struc­
ture of Solid a-Carbon Monooxide (6-31G Basis Set) 

Computation 
method 

in vacuo 
1 shell 
2 shells 
3 shells 
Crystal orbital 
P(2, 0) 

P(1. 1) 

Total energy/eV 

- 3062.7665 
- 3062.8710 
- 3062.8691 
- 3062.7687 
- 3062.8623 
- 3063.7687 
- 3062.8710 

Core—lattice 
interaction 
energy/eV 

0.0 
4.7853 
4.3164 
4.1502 

not computed 
4.1502 
4.0588 

g(C)/e 

0.381 
0.426 
0.422 
0.421 
0.406 
0.421 
0.420 

As reported in Table 2 the CO bond polarity is 
correct even in the in vacuo case. Two factors are 
supposed to cause this result: the standard split 
valence basis set (the opposite direction of the 
dipóle moment of CO molecule appears near 
Hartree—Fock limit) and molecular geometry. The 
bond length 0.1065 nm used in our calculations of 
the CO crystal is far from that of free molecule 
which is 0.112 82 nm [27]. 

By inclusion of point charge spheres into the 
calculated system the polarity of the CO bond 
increases. The carbon net charge raises from 0.381 
e to 0.420 e. The only one shell considered causes 
its overestimation but every next shell taken into 
account makes it lower. The crystal orbital carbon 
net charge is 0.406 e. The electrostatic approxi­
mation result extrapolated to the value for infinite 
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number of shells is thus higher by the value 0.014 
e. This effect is apparently related to the 
neglection of the intermolecular electron—electron 
interaction and it should be expected that in clus­
ter calculation of homodesmic full covalent sys­
tems this interaction should not be neglected. 
The correspondence achieved in carbon net 
charges obtained by two methods - the crystal 
orbital approach and the Padé approximants P(1, 
1) to the cluster results - shows the applicability 
of the purely electrostatic approximation to the 
molecular crystals. 

The molecular orbital energy levels are not sig­
nificantly affected by taking into account the ef­
fect of surroundings in the electronic structure 
calculation. The inclusion of the point charges shifts 
the energy levels slightly to the lower values (by 
hundredth of eV). The energy difference of the 
highest occupied and the lowest unoccupied mo­
lecular orbital increases only by ca. 0.02 eV when 
going from molecule in vacuo to the molecule 
embedded in a point charge environment (the chan­
ge of the real transition from the gas phase to the 
crystalline one is not considered). 

The total energy obtained by means of crystal 
orbital method differs from Padé approximant P(1, 
1) by a value of 0.01 eV. This coincidence is rather 
surprising owing to the fact that electron—electron 
interactions between neighbouring molecules are 
completely neglected in the latter case. 

The core—lattice interaction energy estimated by 
Padé approximant P(1, 1) is 4.0588 eV. Contrary 
to the destabilization effect of this interaction, the 
electron—lattice interaction energy amounts to 4.16 
eV (compared to electron energy of the in vacuo 
molecule with the same geometry). The formalism 
of the crystal orbital method does not allow to 
calculate these interaction energies. 

The problem whether the Padé approximant me­

thod contains contradictory features has been 
questioned by using the CNDO method. Two rea­
sons exist for the choice of this semiempirical 
method. The first one is the simplicity and straight 
applicability of the method. The electrostatic ef­
fect concerns here only diagonal elements of the 
Hamiltonian. The second reason is that semiempi­
rical quantum-chemical methods are still being 
applied to the large clusters (e.g. simulation of 
amorphous systems) and to the transition metal 
coordination complex calculations. Therefore it 
seems to be interesting to verify how such large 
systems behave when affected by point charge 
surroundings. 

Table 3 collects the diagonal elements correc­
tions l/(C) {1/(0)} of the Fock matrix corresponding 
to the carbon or oxygen atomic orbitals, the total 
electronic energy, net carbon charges and Wiberg 
indices W(C—O) [28] of the CO bond for the number 
of shells n = 0, 1, ... 5. Next two rows represent 
Padé approximants P(4, 1) and P(3, 2) of these 
quantities. The table is completed by the results 
obtained using Padé approximants to the diago­
nal corrections. 

Although the Wiberg index is not actually affected 
by the number of the point charge shells, the change 
in the total electronic energy is at the SCF threshold 
on going beyond the number of shells n = 4. 

The full coincidence is achieved between the 
results obtained by means of the Padé approxi­
mants to the diagonal corrections and Padé 
approximants to the total electronic energy and 
net carbon charge. This result implies that it does 
not matter whether Padé extrapolation scheme 
is applied to the calculated quantity or to its di­
agonal correction term. This fact enables us to 
construct more effective calculation algorithm in 
which the SCF procedure is used only Л/it-times 
instead of Л/iťn-times (Л/it stands for the number 

Table 3. Results of CNDO Computat ions of Electronic Structure of Solid a-Carbon Monooxide 

Method 

in vacuo 
1 shell 
2 shells 
3 shells 
4 shells 
5 shells 
P(4, 1) 
P(3, 2) 
Diagonal 
correction 
P(4, 1) 
Diagonal 
correction 
P(3, 2) 

l/(C)/eV 

0.0 
-0.00001704 
-0.00001256 
-0.00001192 
-0.00001173 
-0.00001166 
-0.00001160 
-0.00001139 

-

-

l/(0)/eV 

0.0 
0.00901405 
0.00118582 
0.00121108 
0.00121699 
0.00121944 
0.00122117 
0.00123727 

-

-

Total 
electronic 
energy/eV 

- 679.40956 
- 679.41858 
- 679.41663 
- 679.41678 
-679.41682 
-679.41683 
- 679.41684 
-679.41694 

- 679.41684 

-679.41694 

g(C)/e 

0.000987 
0.001068 
0.001050 
0.001052 
0.001052 
0.001052 
0.001052 
0.001052 

0.001052 

0.001053 

W(C—O) 

2.6528 
2.6527 
2.6528 
2.6527 
2.6527 
2.6527 
2.6527 
2.6527 

2.6527 

2.6527 
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of iterations and n represents the number of 
shells). 

CONCLUSION 

We have demonstrated the consistency of the 
Padé extrapolation scheme at the semiempirical 
CNDO level. This method is successfully used to 
extrapolate quantities obtained by electronic struc­
ture calculation of the molecular cluster of carbon 
monooxide embedded in a point charge environ­
ment to the infinite number of point charge shells. 
The Padé approximation scheme is a general pur­
pose method. Contrary to the Ewald formulae for 
the Madelung sums it is applicable to any type of 
lattice. In the case of highly asymmetric systems 
the need for the higher number of shells should be 
expected for correct description of the charge 
density redistribution. 

The results of the ab initio calculations of the 
same system show that electrostatic approxima­
tion to the crystal environment causes a little 
higher polarity of the С—О bond than that by 
the crystal orbital method. The difference in 
charge distribution obtained by these two meth­
ods enables the application of the electrostatic 
approximation to the covalent crystals. This ap­
proximation completed with Padé extrapolation 
scheme results in the total energy, which is in 
good agreement with that one by the crystal 
orbital method. 

APPENDIX 

In the method of Padé approximants [29] an in­
finite element of a series of к + 1 elements fb f2, 
f3, ... fk+1, which is supposed to be convergent, is 
calculated in the form of polynomials P(/c, 0), 
P(/c-2, 2), ... P(0, /c), where 

P(U) = 5>p/£b r 
p = 0 л=0 

The coefficient b0 obeys the rule b0 = 1 and in­
dices / and j are connected by the relation / + у = 
/с, / > у, у > 0. The detailed calculation procedure 
for obtaining coefficients ap and br is described in 
[29]. 
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