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The analysis of basic assumptions about the data set examines an independence of sample 
elements, normality of sample distribution, minimum sample size, and sample homogeneity. These 
procedures are illustrated on the trace analysis of a DDT content in 144 fish specimens and on 
the quantitative determination of calcium oxide in glass reference material. 

Statistical tests and interval estimates are designed 
to yield reliable results with data which meet certain 
requirements [1—11]. These requirements are cer­
tain assumptions about the nature of the data, ob­
servations. If our data do not meet the assumptions, 
the results may give incorrect answers. Assumptions 
are usually made, the observations are normally dis­
tributed and the errors associated with the observa­
tions are independent and random in nature. If the 
error associated with the one observation does not 
affect the other observations, the errors are said to 
be independent. In the usual course of events some 
of these errors will be relatively large, some relatively 
small, some positive, and some negative. If these 
errors have no particular pattern with respect to the 
size and sign, they are considered to be random. 

This paper brings a description of some statistical 
procedures applied in original statistical package 
ADSTAT for examination of all above assumptions 
about data. 

THEORETICAL 

Statistical treatment of experimental data sup­
poses that the data are independent random vari­
ables coming from the same distribution, obviously 
normal one, and that the sample size is sufficient 
for precise estimates of location and spread to be 
obtained. When some of these assumptions are not 
fulfilled, the data analysis is rather complicated. 
These assumptions must be examined before inter­
val estimation and testing. 

Examination for Independence of Sample Elements 

The basic assumption of good measurement is that 
the individual measurements, observations in the 

sample set are independent. Interdependence of 
measurements is obviously caused by 

1. instability of the measurement device, for exam­
ple, a shift with temperature; 

2. variable conditions of measurements, which 
could be suddenly changed; 

3. neglection of important factor(s) which have a 
great influence on measurement, for example, the 
sample volume, temperature, purity of chemicals, ere; 

4. false and nonrandom (stratified) sampling. 
When some experimental conditions change over 

time, a time dependence in the observations may 
be indicated. When there is a sudden change in 
observations, a heterogeneous sample is formed. In 
both the above cases, a higher value for the vari­
ance is found than for a homogeneous sample. 

Time dependence or dependence on the order of 
observations can be tested for by examining the sig­
nificance of the first-order autocorrelation coefficient 
pa according to 

'-ihr (,) 

where 

f T\ l /72-1 n^fc (2) 
and T is the von Neumann ratio defined by 

П-1 

^ ( x ( / + 1 ) ~ x ( / ) ) 

т = —п (3) 

2>(/)-x)2 

/=1 

When the null hypothesis H0: pa = 0 is valid, the 
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test criterion tn has the Student distribution with 
(n + 1) degrees of freedom. The alternative hypoth­
esis is HA\ pa * 0. When |r„ | > t, _ ^ ( f l i + 1), the 
null hypothesis about the independence of sample 
observations is rejected at the significance level a. 

Examination for Normality of Sample Distribution 

Normality of a sample distribution is the basic as­
sumption of most statistical data treatment, because 
many statistical tests require normality. When the 
type of deviation from normality of the sample is 
known before statistical inference, the directional 
tests are used; when the type of deviation from nor­
mality is unknown, the omnibus tests are used. 

Generally, the statistical tests are less sensitive to 
deviations from normality than diagnostic graphs. 
Moreover, the deviation from normality can be also 
caused by the presence of outliers. When the nor­
mality of sample distribution is not proved, the data 
should be analyzed with great care. For testing nor­
mality of a sample distribution the rankit plot is one 
of the most useful tools, but other useful tests are 
available. 

1. Test of combined sample skewness and curtosis 

The testing criterion used in ADSTAT is defined as 

(4) 
r <7i2(x) , ( g 2 ( * ) - 3 ) 2 

D(flfi(x)) D(g2(x)) 

where д,(х) is the sample skewness and D(g^(x)) is 
its variance, g2(x) is the sample curtosis and D(g2(x)) 
is its variance. For a normal distribution, the test 
criterion С, has approximately the jf distribution, so 
that when C1 > ; ^ _ а ( 2 ) , the null hypothesis about 
normality of sample distribution is rejected. 

2. Anderson—Darling test 

This test is based on the empirical distribution func­
tion FE(x). The null hypothesis, H0: FE(x) = FT(x) is 
tested vs. HA: FE(x) Ф FT(X) where FT(x) is the dis­
tribution function of the fully specified distribution. The 
test criterion is defined as 

AD = n-

S<2/-
/ = 1 

-1)(lnZ,. + ln(1--Zn. -M)) 

(5) 

where Z, is the standardized variable Z, = FT(x(/)). 
When testing for normality of a sample distribution, 
the null hypothesis is formulated HQ: FE = /V(x; s2) 

and the variable Z, = Ф[(х(/) - x)/s] represents the 
values of the normal distribution function. When 
AD > D^_m the null hypothesis about normality is 
rejected. The quantile D^^may, for large samples, 
be approximated by 

D0.95=1.0348 1 
1.013 0.93 

n n 
iß) 

Examination for Minimum Sample Size 

The sample size has an influence on the precision 
of estimates and controls the size of confidence in­
tervals. For very small sample sizes it may happen 
that hypothesis tests are affected more by the sam­
ple size n than by the variability of data. The proce­
dure for finding sufficient sample size is in ADSTAT 
as follows: 

1. From пл starting values the sample variance 
SQ(X) is calculated. The minimum size /7min of a sam­
ple taken from a normal distribution is calculated in 
such a way that for an optioned probability (1 - a) 
and value of d, the confidence interval will be 
li- d <x < ji + d. Then nm j n is given by 

nmin - so ( x ) 
W > ( n i - 1 ) 

-.2 

(7) 

where U.^ (^i - 1) is the quantile of the Student 
distribution with (пл - 1) degrees of freedom. 

2. The minimum sample size nm i n may be chosen 
so that the relative error of the standard deviation 
8(s) has a selected value. Then nm i n is given by 

"min = 1 + 
&>(*)-1 

4S2(s) 
(S) 

where g2(x) is the estimate of the curtosis of the 
sample distribution. The value of 5(s) in % usually 
chosen is 10, i.e. S(s) = 0.1. The minimum size nm i n 

is several tens, so typical sample sizes used in 
chemical laboratories n = 5,10, ... are too small from 
the statistical point of view. 

Examination of Sample Homogeneity 

Sample heterogeneity becomes evident when a 
sample contains outliers or when the sample can be 
logically divided into several subsamples and each 
of them can be analyzed separately. Testing the dif­
ference of subsample averages can indicate whether 
the separation into subsamples can be taken as sig­
nificant or not. We limit ourselves here to the situa­
tion when outliers exist in a data batch. Outliers sig­
nificantly differ from all other values and can be read-
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ily identified by EDA plots [12]. Outliers cause dis­
tortion of the estimates x and s2 and may impair the 
subsequent statistical testing. 

There are many different techniques, e.g. cf. Ref. 
[10] for the identifying outliers, when a normal dis­
tribution of data can be assumed. One of the sim­
plest and most efficient methods seems to be 
Hoaglin's modification of inner bounds B*L and B*u 

and 

Д. - X0.25 - К ( x 0 7 5 - x 0 i 2 5 ) (9) 

ВЬ=х07Б+К(х0ш75-х0Л5) (10) 

where х025 is the lower quartile, x 0 7 5 is the upper 
quartile and the parameter К is selected so that the 
probability P(n, K) that no observation from a sam­
ple of size n will lie outside the modified inner bounds 
[SL, SU], is sufficiently high, for example, P(n, K) = 
0.95. For P(n, K) = 0.95 and 8 < n < 100, Hoaglin 
[9] derived the following equation for calculation of 
parameter К 

К = 2.25 
3.6 

(11) 

All elements lying outside the modified inner bounds 
[SL, By] are considered to be potential outliers. 

COMPUTATION 

Procedure of EDA of Univariate Data 

The extent of exploratory data analysis (EDA) of 
univariate data is best chosen according to experi­
ence from the previous data analysis. We consider 
here two common situations: a) the treatment of rou­
tine data and b) the treatment of new data when no 
preliminary information is available. 

a) The Analysis of Routine Data 

With routine data, some knowledge of the sample 
distribution is assumed — it is usually normal, and 
the data elements are homogeneous and indepen­
dent. Tests for examining all assumptions about data 
should include: /') a test for minimal sample size; /7) 
a test for independence of sample elements; /77) a 
test for normality; /V) a test for homogeneity of sam­
ple. Graphical EDA techniques such as the rankit plot 
and quantile-box plot are often used. 

When no preliminary information about the data is 
available, the full range of EDA plots should be fol­
lowed by determination and construction of the sam­
ple distribution. When no suitable distribution has 
been found, a power transformation of data is rec­

ommended [13]. To summarize a batch of experi­
mental data, the quantile-box plot is always used. 

b) The Analysis of New Data 

Analyzing new data, there are several cases that 
require different strategies for the EDA and CDA 
procedures [12—14]. 

Case L No independence of sample elements 

When the sample elements are not proved to be 
independent a danger of systematically biased and 
overevaluated estimates for a positive value of pa 

arises. Therefore, a new logical analysis of the ex­
perimental equipment and data measurement pro­
cedures is necessary: after an improvement in the 
experimental strategy, the new data should be ex­
amined again. 

Case IL No normality of sample distribution 

The actual distribution of sample is not normal in 
nature, or outliers are present in data. When the dis­
tribution is not normal, the deviation can be in the 
length of tails or in skewing. When tails differ in 
length, robust estimates may be used, or a power 
transformation [13] should be chosen. For skewed 
distributions, a power transformation should be al­
ways used. When a power transformation is success­
ful and the optimal value A is found, the estimates 
of the parameters of location and spread can be 
calculated and reexpressed in the measure of the 
original variables. If the power transformation is not 
successful, exploratory data analysis [12] can be 
used to find a suitable approximate theoretical dis­
tribution. 

When the actual distribution is strongly skewed, 
with the skewness gb the random variable rc can be 
defined 

*c = (x - jl) + 01 & /77 

6 a2 n За" 
(x - rf 

^ 
(12) 

Variable rc has the Student distribution with (n - 1) 
degrees of freedom and can be used for confidence 
interval construction. In practical calculations the 
variance o2 is replaced by its unbiased estimate s2 

and the skewness дл by its unbiased estimate 

01 
( n - 1 ) ( n - 2 ) £ f 

2>,-x)3 
(13) 

For a construction of the confidence intervals HL < 
/и. < Ну, the quadratic equation to /z defined by eqn 
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(12) should be solved. The limits HL and Hu will then 
be 

H L = x + l z _ Ä {14) 
2C2 

Hö = x + '-^& (15) 

di - 1 - 4C2(C, - C) 

d2 = 1 - 4 0 2 ^ + C) 

С = Ц_а12(п-Л)^-

The confidence interval of the mean H L < д < Н и 

can be also used for statistical inference about this 
parameter of location. 

Case III. Sample not homogeneous 

It should first be considered whether the distribu­
tion is skewed or not, because some points would 
appear to be outliers for a symmetrical (normal) dis­
tribution, but would be accepted in a skewed distri­
bution. 

When some points may be extremes or outliers 
there are two alternatives: a) Exclude the outliers 
from the data batch. For a small sample size, this 
may lead to loss of valuable information; b) Apply 
robust methods. In both cases the experimenter 
should be consulted about the suspect points from 
the physical point of view, in order to consider the 
possibility of gross errors. 

Case IV. The sample size is not sufficient 

The best solution is to carry out new experimental 
measurements. As a general rule, when the variance 
of the data is small, a relatively smaller size will be 
required for any given precision of estimate. When 
no extra experiments can be carried out, the tech­
nique for small sample sizes should be applied. This 
is convenient for routine data analysis, but for new 
data exploratory data analysis should be used first, 
so that any statistical peculiarities of the sample are 
determined. 

SOFTWARE 

Procedure BASIC ASSUMPTIONS in package 
ADSTAT [15] computes minimal sample size for 

normally distributed data. It enables a test of sam­
ple independence based on autocorrelation coeffi­
cient, test of normality, and test of homogeneity 
based on normality assumption, too. 

RESULTS 

Study Case 1. Trace analysis sample contains 
many outliers 

Chemical plants often discharge toxic waste ma­
terial into nearly rivers and streams. One type of 
pollutant, commonly known as DDT, is especially 
harmful to fish and, indirectly, to people. There is the 
limit for DDT content (w) in individual fish at 5 parts 
per million (5 ppm). Fish with DDT content exceed­
ing this limit are considered potentially hazardous to 
people if consumed. A study was undertaken to ex­
amine the DDT content of fish inhabiting the river 
near the chemical plant [16]. A sample of 144 fish 
specimens was analyzed on the DDT content to 
estimate the measures of location and to test the 
allowed content w = 5 ppm. 

Data (w/ppm): 10.00,19.00,1.30,12.00,16.00, 7.20, 
4.80, 33.00, 23.00, 6.00, 5.10, 48.00, 21.00, 10.00, 
5.10, 10.00, 50.00, 12.00, 4.00, 44.00, 150.00, 2.80, 
10.00, 0.43, 28.00, 0.48, 12.00, 1100.00, 7.70, 0.18, 
22.00, 9.40, 2.00, 0.34,10.00, 4.10, 19.00, 0.11,11.00, 
2.80, 16.00, 0.22, 17.00, 0.74, 5.40, 0.80, 9.70, 14.00, 
2.60, 8.70, 12.00, 22.00, 3.10, 22.00, 4.70, 9.10, 3.50, 
13.00, 6.00, 140.00, 9.10, 3.50, 3.80, 4.20, 7.80, 9.30, 
17.00,12.00, 4.10, 21.00,12.00, 2.00, 8.40, 3.40,1.40, 
0.30, 15.00, 13.00, 6.10, 1.20, 25.00, 5.60, 2.80, 7.10, 
5.60,12.00, 4.80,180.00, 4.60, 21.00, 5.70,1.50, 8.20, 
8.00, 3.30, 2.40, 6.10, 12.00, 3.30, 4.30, 13.00, 6.00, 
3.70, 3.90, 6.00, 4.70, 9.90, 99.00, 6.60, 31.00, 6.80, 
0.45, 5.50, 5.20, 13.00, 2.50, 11.00, 27.00, 8.80, 0.25, 
4.50, 18.00, 57.00, 0.58, 4.20, 7.50, 96.00, 2.00, 3.00, 
3.00, 360.00, 2.20, 2.30, 13.00, 130.00, 7.40, 2.50, 
7.30, 13.00, 0.35, 6.80, 15.00, 61.00, 1.90. 

Solution: Notice that the data set contains many 
outliers because in some river tributaries the DDT 
content is even 1000 times greater. For this reason 
some of the EDA graphs [12] are confused (Fig. 1). 
Statistical tests examining basic assumptions of sam­
ple are here suitable. 

a) Test for independence of sample elements tn = 
0.3472 < řo.975 (144 + 1) = 1.976 leads to conclusion 
that an independence of sample elements is accepted. 

b) Test for normality of sample distribution C, = 
65806 > / i _ a ( 2 ) = 5.992 leads to conclusion that 
the normality is rejected. It is perhaps for the pres­
ence of outliers in a sample. 

c) Test for sample homogeneity leads to conclu­
sion that a sample contains 13 outliers which should 
be excluded from the sample. Outliers are: 50, 150, 
57, 96, 360, 130, 61, 48, 44, 1100, 140, 180, 99. 
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Fig. 1. Box-and-whisker plots of DDT content in fish. 

d) Interval estimate of location of DDT content for 
original sample represented by the mean is (25.04 
± 16.23) ppm. As normality of sample distribution is 
rejected and sample contains 13 outlying values, this 
value of sample mean is false and cannot be used. 
Excluding outliers the mean reaches more realistic 
value (8.32 ± 1.70) ppm. 

When some basic assumptions are not fulfilled, 
robust estimates of location, i.e. the median and the 
trimmed mean should be used: median = (7.25 ± 
1.79) ppm, 5 % trimmed mean = (11.00 ± 4.09) ppm, 
10 % trimmed mean = (9.01 ± 1.89) ppm, and 40 % 
trimmed mean = (7.30 ± 1.63) ppm. Robust estimates 
lead to similar values as the mean of sample with 
excluding outliers and can be taken as acceptable 
estimates of location. Presence of outliers leads here 
to the unacceptable high estimate of location. 

The DDT content of 7.25 ppm is higher than al­
lowed 5 ppm so that the fish are considered toxic. 

Study Case 2. Comparison of graphical and test 
diagnostics 

To prepare the reference glass material the ana­
lytical content of calcium oxide CaO was evaluated 
by the AFS method and the following data set has 
been achieved [17]. 

Data (w(CaO)/%): 4.084, 4.043, 4.004, 4.048, 4.013, 
3.993, 4.067, 4.019, 4.073, 4.041, 4.056, 3.985, 4.038, 
4.007, 4.046, 3.996, 4.004, 4.050, 4.020, 4.082, 3.992, 
4.039, 4.047, 4.024, 4.001, 4.004, 4.056, 4.048, 4.030, 
4.015. 

Solution: Graphical diagnostics of the exploratory 
data analysis are compared with statistical tests of 
basic assumptions about a sample: 

a) Test for independence of CaO sample elements 
tn = 1.110 < řo.975 (30 + 1) = 2.039 leads to conclusion 
that an independence is accepted. There is no time 
dependence of measured values of CaO content. 

b) The test of combined sample skewness and 
curtosis for normality of sample distribution Сл = 

M. MELOUN, J. MILITKÝ 
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Fig. 2. Box-and-whisker plots of CaO content in glass. 
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Fig. 3. Kernel estimate of the probability density function of 
original sample concerning CaO content in glass. Up­
per curve: the empirical curve of sample distribution. 
Lower curve: the curve of Gaussian distribution. 

40.434 > ^ i _ a ( 2 ) = 5.992 leads to conclusion that 
the normality is rejected while the Anderson—Dar­
ling test, AD = 0.390 < D095 = 0.731, proves a sam­
ple normality. The box-and-whisker plot (Fig. 2) and 
the kernel estimate of probability density function 
(Fig. 3) show that the sample contains one signifi­
cant outlier of high value and distribution is rather 
skewed to lower values. The quantile-quantile plot 
(Fig. 4) shows that except one outlier the points fit 
with a straight line quite well. 

c) Test for minimum sample size leads to conclu­
sion that to reach 10 % relative error of standard 
deviation there should be measured 135 observations. 

d) Test for sample homogeneity leads to conclu­
sion that 1 significant outlier (8.902) should be ex­
cluded. This conclusion is indicated also by graphi­
cal diagnostics of exploratory data analysis. Exclud­
ing this outlier from the sample, the quantile-quantile 
plot proves normality (Fig. 5) and the curve of 
Gaussian distribution is closer to the empirical curve 
(Fig. 6). 

e) Interval estimate of location for original sample 
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Fig. 4. Quantile-quantile plot of original sample concerning CaO 
content in glass. 
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Fig. 5. Quantile-quantile plot of sample with excluded outlier 
concerning CaO content in glass. 

represented by the mean is 8.581 ± 0.034. Exclud­
ing the outlier 8.902, the new mean is 8.570 ± 0.030. 
Robust estimates of original data lead to the values: 
5 % trimmed mean is 8.572 ± 0.029, 10 % trimmed 
mean 8.569 ± 0.031, 40 % trimmed mean 8.568 ± 
0.033, and the median 8.566 ± 0.033. 

It is evident that the presence of one outlying point 
did not significantly corrupt the interval estimate of 
location. 

CONCLUSION 

Classical approach to instrumental data analysis 
in chemistry is based on some strong assumptions 
about statistical nature of data as an independence 
of sample elements, a sample normality, a sample 
homogeneity, and the minimal sample size. Besides 
statistical tests the graphical diagnostics of explora­
tory data analysis may be used. Often, the chemi­
cal data are less ideal and do not fulfil all these as-

6.00 

5.00 

4.00 

5 3.00 
Q. 

2.00 

1.00 

0.00 

-I I > > ^ 

// 

- / 

-

" i i i 

I l • 

\ 

\ \ 

\ \ 

\ \ 

^ ^ V 

I l l " 

8.45 8.55 8.65 8.75 

Fig. 6. Kernel estimate of the probability density function of 
sample concerning CaO content in glass when outlier 
is excluded. Upper curve: the empirical curve of sam­
ple distribution. Lower curve: the curve of Gaussian dis­
tribution. 

sumptions. The robust statistics are recommended 
mainly for a case of outliers in the sample. 
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