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The paper gives an evidence that isobahc-isothermal composition dependence of molar quan­
tities of mixing in binary systems AmixE = x(1 - x)<p(x), introduced by Guggenheim, which is the 
only one consistent with the method of intercepts equation, can be generalized to an analogous 
relation valid for /c-component systems (k > 2) and all quantities of mixture. 

Isobaric-isothermal composition dependence of 
molar quantities of mixing AmixE is in thermodynamic 
calculations for binary systems used in the form 

A m i x E=x(1 -x)cp(x) (7) 

which was introduced by Guggenheim for excess 
Gibbs energy [1] (x is the mole fraction of the sec­
ond component). If <p(x) is proper, definite regres­
sion function, eqn (7) satisfies the boundary condi­
tions which are by definition 

AmixE(x = 0) = 0 (2) 
A m i x E(x=1) = 0 (3) 

There are, however, additional dependences satisfy­
ing these conditions, e.g. exp [- 1/x(1 -x)](p(x) or sin 
(лкх)(р(х). Parameters characterizing a system are in 
these functions involved only in the function <p(x). 

Guggenheim [1], Redlich and Kister [2], and 
Scatchard [3] selected the function <p(x) for Am i xG

E 

(excess Gibbs energy of mixing) to be of the form 

<p(x) = AQ + A,{2x - 1) + Л2(2х - 1)2 + (4) 

where A0, Ab...9 are constants. The only criteria to 
choose this form of <p(x) were that the function (7) 
satisfies conditions (2) and (3), it is smooth and has 
the simplest possible form. However, this selection 
requires an additional criterion for quantities of mix­
ing, in particular, the function cp(x) to be finite. 

If we replace AmixE with AmixG
E/(flT) and the func­

tion <p(x) we write as 

qix) = Ax + S(1 - x) (5) 

where A, В are constants and substitute both into 
eqn (7), it is then possible to derive for AmixG/E the 
relations that are identical with those obtained by 
Margules [4]. Margules, however, started with the 
regression functions for a fraction д/Р, that could be 
thought of as, in those times not yet introduced, ac­
tivity a, 

l n ^ = a 0 l n ( 1 - x ) + ^ x / (6) 

l n ^ = / J 0 l n x + y ^ ( 1 - x ) ' (7) 
ľ2 i i 

in which a/s and /}/s are Margules' constants. In the 
case of CXQ = ß0 = 1 and ал = Д = 0,_right-hand sides 
of eqns (6) and (7) are equal to AmixG/ /(ЯТ). Carlson 
and Colburn [5] rewrote these equations to the form 
consistent with eqn (5). 

If we write the function <p(x) for AmixG
E/(RT) in the 

form 

(p(x) = — (8) 
ГК } Д(1-х) + Вх v ' 

and substitute^ into eqn (7), then it is possible to 
derive for AmixG/E the relations identical with van Laar 
functions [6] 

(1 + rxf 

A m i x G 2 = (1 + r)(1 + rx) 2 {10) 

which were also rewritten to the form consistent wi.th 
eqn (8) by Carlson and Colburn [5] (a and r are con­
stants). Van Laar did not derive eqns (9) and (70) start­
ing with eqn (7), either, but he started with the van 
der Waals equation for a binary liquid mixture [7]. 

The purpose of this paper is to prove that the re­
lations analogous to eqn (7) are the only ones con­
sistent with the general method of intercepts equa­
tion. 

THEORETICAL 

Let the composition of /c-component system be 
given by the mole fractions xy of components and let 
the mole fraction of the /-th component 
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x f = 1-Yx/ be the dependent variable. It is then 
/=1 
M 

possible for an extensive quantity E of 1 mol of mix­
ture (temperature and pressure being constant), 
which is a homogeneous function of the 1st homo­
geneity with respect to amount of substance n,, to 
write down an equation 

к 

i 
/=1 

£ = Xx,£/= ]£//£,+ 
/=1 
ш 

1-2*, 

= E,+ !> , (£ , -E , ) (11) 
/=1 
Ш 

where E,- is the partial molar quantity of the Mh com­
ponent. Differentiating eqn (7 7) and using the 
Gibbs—Duhem equation in its differential form we 
obtain a relation 

к _ _ 
dE(xb..,xf_bxf+b..,xk) = ^Г (E, - E, )dx, + 

/=1 

r 

i-^X/dE, 7 + 
/=1 

1"X*/ 
/=1 
ш 

аЕг = ^(Е1-Ег)аХ;(12) 
/=1 

Hence using eqn (72) we have (/c- 1) relations for 
dependent variable mole fraction of the f Ah compo­
nent 

and eqn (14) is the partial, differential equation con­
sistent with this method. 

The above relations are also valid in a particular 
case when we consider a quantity of mixing AmixE 
instead of E. The boundary conditions are in this 
special case 

AmixE(X/ = 0, X/,-1) = 0 , / = 1,2, ..., k,i*h (15) 

Assuming 3AmJXE(x1f ..., x ,_ 1 f x , + 1f ..., xk)/dx, for 
i* f, h is finite, eqn (14) implies for the quantities of 
mixing at xh±f= 1 (i.e. хыь= 0) the relation 

dAmiXE(xb ..., xf_b x,+ 1 l ..., х*)/Эх, = -AmixE, (75a) 

Rewriting eqn (14) to integrable form we obtain, 
for dependent variable mole fraction of the /-th com­
ponent and for chosen /7-th component, (k - 1) the 
following relations 

dE(xb..,Xf_bXf+b..,Xk) 

Эх„ 

— + У -
i*f,h 

E(xb..,Xf_bxf+b..,xk) 

dE(Xb„,Xf_bXf+b..,Xk) 

Эх/ 
(76) 

Multiplying eqns (76) by integrating factor 1/x,,, their 
left-hand sides turn into partial derivative Э[Е(х1}..., 
xf_b x/ + 1 xk)lxh]ldxh. Partially integrating in such 
manner rearranged equations we obtain, for constant 
values of x^fth1 relations as follows 

dE(Xb...,Xf_bXf+b...,Xk) 

Эх,-
= E;-Ef (13) 

where E/ f E f are the functions of x^..., xf_b x / + 1 l 

..., x^. Substituting eqn (73) into eqn (7 7) we have 
the partial differential equation 

E(xb..,Xf_bxM,..,xk) 

-Ü 

Xh 

—+У-
X / 7 /=1 X / 7 

dE(xb..,Xf_bXf+b..,Xk) 

Эх/ 
Эх„ 

E(x1 f . . .Х/.^х^»..^) - E/ + 

^Xx> 
/=1 

ЭЕ(х1,...,хМ|Х/+1,...,х^) 

Эх/ 
(14) 

4*i 

Eqn (7 7) is the equation of a (/c- 1)-dimensional fig­
ure (curve, surface and/or hypersurface) and the 
partial derivatives 3E(x1f..., xf_b x/ + 1,..., xJ/Эх, are 
the slopes of tangent, of (k- 1)-dimensional, linear 
surface at the point (x1f..., х ,_^ x,+ 1,..., x^). Eqns 
(7 7), (73), and (14) imply that Ef is the intercept of 
this surface with the E-axis at the point xf= 1. Eqn 
(77), derived by Gibbs [8] for a ternary system, is 
thus a general equation of the method of intercepts 

-F(xb..,Xf_bxM,..,xk) + 
+ C(xb..,xf_b xf+b..,xh_b xh+b..,xk) = 

= 0(x 1 f . . f x M l x, + 1 f . . f x*) (17) 

Integration constant in eqn (17) is thus a function of 
mole fractions of /c- 2 components and therefore is 
composition-independent in a binary system. 

If the function E is expanded into the McLaurin 
series, the partial derivative {Э[Е(х1 xf_b x/ + 1, 

•••» xk)lxh]ldxh}x^{ h does not contain the sum of co­

efficients Ac in the part of expansion xh V A^ . There-

fore, this sum is involved in the integration constant 
C(xb..., x,_1f x/+1,..., x „ _ 1 f хл +!,..., x*) in eqn (77). 
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Assuming the mentioned expansion of E(xb..., xf_b 

*r+i.—. xk)> the same sum is equal to the first partial 
derivative [дЕ(хь..., xf_u x , + 1,..., xk)ldxh]Xl^fh for 
xh= 0. When this is the case, the relation 

C ( X 1 f . . . , X r _ 1 f Xf + 1 f . . . , X/ ,_ 1 f X/7 + L-.., x ^ ) = 

= [дЕ(хъ..., xf_u xf+!,..., х ^ / Э х , ^ ^ (78) 

is valid. 
Eqn (17) may be rewritten for all xhe {x1f..., x,_-,, 

*/+i.—. *k}t0 t h e ( ^ - 1 ) relations 

E(x1,..,Xr_lJX/ + 1,..,x,f) = х1Ф1(х1,..,х^_1,х^+1,..| X/f) 
= х2Ф2(х<|,.., X/_1f X/+ -|,.., x j 

(79) 
= ХкФк(Х^}..} Xf _ ^, Xf + ^,..} xk) 

When xh = 0, Фл goes to infinity but the uncertain 
expressions on the right-hand side of the last equa­
tion limit to the right value E. 

Multiplying the right-hand sides of eqn (19) by the 
unit term 

( 4 - 1 

n*> 
/=1 

i*f,h 

(20) 

we can formally transform them to the frequently 
used form 

/=1 

IM ) 

0(xb..,xf_bxUb..xk)(21) E(xb..,Xf_bxf+b..xk) -

The function Ф(х1,..., x,_1? x,+ 1,..., x^) has the same 
value for any ft-th component. If some of x, (/'* /, h) 
are equal to zero, the function Ф(х1,..., xf_b xf+b..., 
xk) goes to infinity but again, the uncertain term on 
the right-hand side of eqn (21) limits to the E-value. 

If we select mole fraction of the g-th component 
к 

x g = 1-^Tx/ to be the dependent variable in eqn 
/=1 
1*9 

(7 7), using the same procedure we obtain an equa­
tion analogous to eqn (21) 

E(xb..,Xg_bxg+b..xk) -- n*» 
i*9 

Ф(хь..,хд_ьхд+Ь..хк)(22) 

The function Ф(х1,..., xg_b xg+b..., xk) has the same 
properties as the one Ф(х1,..., x f_1 f x,+ 1,..., x^). 

For the mole fractions x1f..., xh x,and xg being as 
dependent variables among them, we obtain, join-
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ing eqns (21) and (22), an equation 

E(xb..,Xf_bxf+b..xk) = E(xb..,Xg_bxg+b..xk) • 
r \ 

к 
<P(xb..,xf_bxf+b..,xk) = 

/=1 

V M J 

f \ 
к n-

/=1 
1*9 

Ф(Х 1 , . . ,Хд_ 1 ,Х у + 1 , . . , Х / с ) 

(23) 

Multiplying the right-hand sides in eqn (23) by the 
unit term XfX/Г1 and ХдХ~л we obtain the relation 

E(xb...,xk) = 
í к Л n*. 

/=1 

q>(xb...,xk) (24) 

For some zero values of xh the function <p(x1f..., x )̂ 
has similar properties as the above functions Ф(хь..., 
X/_1f X/+i,..., X/j and Ф(х1,..., Xg_i, Xg+1,..., X/j. If 
some of x/s had zero or other constant values, it is 
impossible to derive fitting the experimental data the 
term cp(xb..., xk) as a function of mole fractions of 
all components. 

Theory Application — Binary and Ternary 
Systems 

For the binary systems eqn (23) is simplified to the 
relation (xf = x2; xg= xj 

E(x,) = E(x2) = х,Ф(х,) = х2Ф(х2) (25) 

Because 

x1 + x2 = 1 (26) 

eqn (25) can be written as 

х1Ф(х1) = (1-х1)Ф(х2) (27) 

Substituting Ф(х2) from eqn (27) into eqn (25) we 
obtain a relation analogous to eqn (24) 

E(x,) = E(x2) = х,Ф(х,) = (1 - х1)х1[Ф(х1) + Ф(х2)] = 
= x1x2<p(x1,x2) (28) 

which is valid for both zero and nonzero values of 
x,. The uncertain forms on the right-hand side of eqn 
(28) at хл = 0 or хл = 1 limit to the finite values (in 
the special case lim Am i xE = 0). 

For the ternary systems eqns (27, 22) and (24) are 
simplified to the relations 

E(x1fx2) = х1х2Ф(х1,х2) (29) 
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E(xb x3) = х1х3Ф(х1, x3) (30) 

E(*2> *з) = Х2Х3Ф(Х2, x 3 ) (31) 

and 

E(x1f x2, x3) = x,x&3(p(xb x2, x3) (32) 

Multiplying both sides of eqns (29—32) by positive 
numbers a, /3, 7, and 5 the sum of which is equal to 
1 and adding the obtained relations we get a new 
formal equation (E(xb x2) = E(xb x3) = E(x2, x3) = 
E(x1f x2, x3)). 

E(x1f x2, x3) = х^х2аФ(хь x2) + х^хфФ(хь x3) + 
+ х2х3уФ(х2, x3) + х^х^(38(р(хь x2, x3) (33) 

Using the relations 

а=г(х 1 ,х 2 )/Ф(х 1 ,х 2 ) (34) 

ß=f(xbx3)IO(xbx3) (35) 

7=/(х2,х3)/Ф(х2,х3) (36) 

8 = f(xb x2> х3)1(р(хъ x2, x3) (37) 

eqn (33) transforms to the form 

E(x1f x2, x3) = x^x2f(xb x2) + x ^ ŕ ^ , x3) + 
+ x2x3f(x2l x3) + х ^ г Х ^ , x2, x3) (38) 

This is a frequently used equation identical with the 
Redlich—Kister equation [2]. 

Eqns (29—37) are valid (when x,+ xy= 1) for all 
three binary subsystems of a ternary system. Be­
cause one of the mole fractions is always equal to 
zero it is impossible to derive the general forms of 
these equations using only the determined relations 
(28). If the functions f(xb x2), f(xb x3), f(x2, x3) in eqn 
(38) and Ф(хь x2), Ф(хь x3), Ф(х2> x3) in eqns (29— 

31) are expressed as regression polynomials of the 
same form, the ratios of coefficients referring to the 
same powers of variables in the corresponding f-
and Ф-functions are equal to а, Д and 7, respec­
tively. If X/+ Xy= 1 and x / f ^ / / = 0 are valid relations 
for eqn (38), then this equation is transcribed to the 
equation of the only unknown in a binary system i—j. 

CONCLUSION 

It was proved that general relations analogous to 
eqn (1) are the only ones consistent with the method 
of intercepts for binary systems; formal relations 
analogous to eqn (1) are generally valid for the k-
component systems (k = 2, 3, ...) — if some of the 
mole fractions are equal to zero, the uncertain ex­
pressions tend to the right value of a quantity under 
consideration; relations analogous to eqn (1) are 
valid for all quantities of mixture (not only for quan­
tities of mixing). 
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