The Crystal and Molecular Structure of 3-Phenyl-5-benzyl-6-oxo-1,6-dihydro-1,2,4-triazine

^aZ. TRÁVNÍČEK, ^bK. NÁLEPA, and ^cJ. MAREK

^aDepartment of Inorganic and Physical Chemistry, Faculty of Natural Sciences, Palacký University, CZ-771 47 Olomouc

^bDepartment of Analytical and Organic Chemistry, Faculty of Natural Sciences, Palacký University, CZ-771 46 Olomouc

Department of Inorganic Chemistry, Faculty of Natural Sciences, Masaryk University, CZ-611 37 Brno

Received 26 October 1994

The crystal and molecular structure of the title compound was elucidated. The structure was solved by direct methods and refined anisotropically to R = 0.0393 for 1577 unique observed reflections. The crystal is monoclinic, P2₁/c, $a = 12.036(2) \ 10^{-10}$ m, $b = 12.3257(11) \ 10^{-10}$ m, $c = 9.3466(12) \ 10^{-10}$ m, $\beta = 102.719(12)^{\circ}$, Z = 4. The presence of one from possible tautomeric structures has been proved using X-ray diffraction. The structure is stabilized by intermolecular hydrogen bonds.

On the basis of the systematic study of nitrogenous heterocyclic compounds we were concerned with preparation and reactions of 3,5-disubstituted 6-oxo-1,6-dihydro-1,2,4-triazines in our previous works [1—6]. From reactions of these substances it is evident that they exist in a few tautomeric forms [7]. Some of possible tautomeric structures are shown in Scheme 1. For this reason we decided to solve the crystal and molecular structure of 3-phenyl-5-benzyl-6-oxo-1,6-dihydro-1,2,4-triazine (/) as a starting substance.

EXPERIMENTAL

3-Phenyl-5-benzyl-6-oxo-1,6-dihydro-1,2,4-triazine (/) was synthesized according to the procedure described in [8]. Crystals for X-ray structural analyses were obtained by recrystallization from an ethanol—benzene (1 : 1) mixture. The experimental density was estimated by the flotation method in a H_2O —KI mixture.

Diffraction experiment was performed on a KUMA KM-4 four-circle diffractometer at 293 K using graphitemonochromatized MoK α radiation ($\lambda = 0.71073 \ 10^{-10}$ m) and a crystal with dimensions of 0.60 mm × 0.45 mm × 0.30 mm. Lattice parameters were refined using 50 reflections in the range 23.8°< $2\theta < 41.0^{\circ}$. Intensities were measured with ω -2 θ scan technique within the 4.8°< $2\theta < 50.2^{\circ}$ region. Index ranges: $-14 \le h \le 14$, $0 \le k \le 14$, $-11 \le l \le 0$. The three standard reflections (4 3 0, -24 - 3, -244) were checked after every 80 measurements (the e.s.d.'s were slighter than 1.5%). Extinction and absorption corrections were not applied.

The phase problem was solved by direct methods and the structure was anisotropically refined by the fullmatrix least-squares procedure with weighting scheme $w = 1/[\sigma^2(F_o^2) + (0.065P)^2 + 0.25P]$, where $P = (F_o^2 + 2F_o^2)/3$. All hydrogen atom positions were found from the difference Fourier synthesis and were refined isotropically. The maximum and minimum electron densities on the final difference Fourier map were 1.50 ×

Scheme 1

 10^{29} and -1.30×10^{29} e m⁻³. Other maxima were found inside the phenyl, benzyl, and triazine ring, respectively. Refinement of the structure was based on F^2 . The weighted *R*-factor, *wR*, and goodness of fit, *S*, were based on F^2 The conventional *R*-factor, *R*, was based on *F*. The observed criterion of $1 > 2\sigma$ (I) was used only for calculation of R_{obs} and wR_{obs} , respectively, and is not relevant to the choice of reflections for refinement. The following programs were used: SHELXS-86 [9], SHELXL-93 [10], PARST [11], and ORTEP [12].

RESULTS AND DISCUSSION

The basic crystallographic data and structure refinement parameters are given in Table 1. The final coordinates and equivalent isotropic thermal parameters of non-H atoms are summarized in Table 2. Complete set of bond distances and angles is listed in Tables 3 and 4.

The molecular structure of the compound studied (Fig. 1) confirms the presence of a single tautomer in solid state. The distance C(6)—O(7) (1.233(2) 10^{-10} m) is typical for the double bond [13] (Table 3) and the same is valid for the bond lengths N(2)—C(3) (1.306(2) 10^{-10} m) and N(4)—C(5) (1.290(2) 10^{-10} m), respectively.

The six-membered triazine ring deviates significantly from planarity (the value of $\sum (d/s)^2$ for the N(1), N(2), C(3), N(4), C(5), and C(6) atoms is 214.8; the value of χ^2 at 95 % probability level is 7.8). The N(1), N(2), C(3), C(5), and C(6) atoms displaced by – 0.005(2) 10⁻¹⁰ m, – 0.006(2) 10⁻¹⁰ m, 0.012(3) 10⁻¹⁰ m, – 0.014(2) 10⁻¹⁰ m, and 0.016(2) 10⁻¹⁰ m, respectively, from the least-squares plane fitted through the N(1)–N(2)–C(3)–N(4)–C(5)–C(6) atoms (plane 1). The N(4) atom lies

Table 1. Basic Crystallographic Data and Refinement Parameters

Formula unit	C ₁₆ H ₁₃ N ₃ O
Relative molecular mass	263.29
Crystal system	monoclinic
Space group	P2,/c
Unit cell dimensions	$a = 12.036(2) \ 10^{-10} \ m \ \alpha = 90^{\circ}$
	$b = 12.3257(11) \ 10^{-10} \ \text{m} \ \beta = 102.719(12)^{\circ}$
	$c = 9.3466(12) \ 10^{-10} \ \text{m} \ \gamma = 90^{\circ}$
Volume	1352.6(3) 10 ⁻³⁰ m ³
Ζ	4
Density (calc./exp.)	1.293 g cm ⁻³ /1.29 g cm ⁻³
Absorption coefficient	0.084 mm ⁻¹
<i>F</i> (000)	552
Reflections collected	2569
Independent reflections	2408 (<i>R</i> _{int} = 0.0161)
Reflections observed	1577
Data/parameters	2395/220
S _{obs./all}	1.036/1.827
$R_{\rm obs.}$ (I > 2 σ (I))	<i>R</i> = 0.0393, <i>wR</i> = 0.1080
R _{all}	<i>R</i> = 0.1127, <i>wR</i> = 0.2413

 Table 2.
 Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (10⁻²⁰ m² × 10³)

Atom	104 <i>x</i>	10⁴ <i>y</i>	10⁴ <i>z</i>	U _{eq}
N(1)	681(1)	6125(1)	1183(2)	51(1)
N(2)	1412(1)	6621(1)	2298(2)	51(1)
C(3)	1413(1)	7680(1)	2266(2)	46(1)
N(4)	713(1)	8304(1)	1213(2)	48(1)
C(5)	13(1)	7815(1)	169(2)	46(1)
C(6)	- 32(1)	6628(1)	61(2)	49(1)
O(7)	- 651(1)	6130(1)	- 953(1)	64(1)
C(8)	- 806(2)	8448(2)	- 963(2)	51(1)
C(9)	2230(1)	8250(1)	3429(2)	50(1)
C(10)	2353(2)	9357(2)	3384(3)	79(1)
C(11)	3121(3)	9895(2)	4453(3)	96(1)
C(12)	3783(2)	9341(2)	5588(3)	80(1)
C(13)	3664(2)	8233(2)	5656(2)	75(1)
C(14)	2899(2)	7689(2)	4589(2)	63(1)
C(15)	- 1951(1)	8536(1)	- 560(2)	47(1)
C(16)	- 2834(2)	7841(2)	- 1142(2)	68(1)
C(17)	- 3880(2)	7950(2)	- 746(3)	83(1)
C(18)	- 4038(2)	8748(2)	217(3)	79(1)
C(19)	- 3165(2)	9429(2)	789(3)	74(1)
C(20)	- 2130(2)	9323(2)	421(2)	59(1)
H(1)	683(16)	5312(18)	1188(21)	72(1)

 $U_{\rm eq}$ is defined as one third of the trace of the orthogonalized $U_{\rm i}$ tensor.

Table 3. Bond Lengths in Substance /

Bond length/10 ⁻¹⁰ m						
N(1)—C(6)	1.351(2)	C(9)—C(14)	1.385(3)			
N(1)-N(2)	1.352(2)	C(10)-C(11)	1.374(3)			
N(2)C(3)	1.306(2)	C(11)-C(12)	1.362(4)			
C(3)—N(4)	1.380(2)	C(12)C(13)	1.377(4)			
C(3)C(9)	1.474(2)	C(13)-C(14)	1.373(3)			
N(4)-C(5)	1.290(2)	C(15)-C(16)	1.380(2)			
C(5)—C(6)	1.467(2)	C(15)-C(20)	1.383(2)			
C(5)—C(8)	1.497(2)	C(16)-C(17)	1.394(3)			
C(6)-O(7)	1.233(2)	C(17)-C(18)	1.374(3)			
C(8)-C(15)	1.511(2)	C(18)-C(19)	1.359(3)			
C(9)-C(10)	1.374(3)	C(19)C(20)	1.370(3)			
N(1)—H(1)	1.00(2)	* * * *				

Table 4. Bond Angles in Su	bstance /
----------------------------	-----------

Fig. 1. View of a molecule of the triazine with atom numbering. Thermal motion is shown by ellipsoids at the 50 % probability level.

Fig. 2. A stereoscopic view showing molecular packing in crystal. Dashed lines indicate the hydrogen bonding.

in this plane. The remaining two six-membered rings, *i.e.* phenyl ring (plane 2) and benzyl ring (plane 3), are situated in different planes. The dihedral angles formed by least-squares planes are as follows: (plane 1—plane 2) $6.51(7)^\circ$, (plane 1—plane 3) $73.07(6)^\circ$, (plane 2—plane 3) $77.78(7)^\circ$ The molecules are linked together by N—H...O hydrogen bonds involving the N(1) atom and the O(7) atom (the N(1)...O(7)^{*i*} interatomic contact is equal to $2.787(2) \ 10^{-10}$ m) of the neighbouring molecule (H(1)...O(7)^{*i*} = $1.79(2) \ 10^{-10}$ m; *i*: -x, -y+1, -z). The latter distance also represents the shortest intermolecular contact, which has been observed in this structure. A stereoscopic view showing the structure and crystal packing of the compound is displayed in Fig. 2. Intermolecular hydrogen bonds are indicated by dashed lines.

REFERENCES

1. Nálepa, K. and Slouka, J., Monatsh. Chem. 98, 412 (1967).

- Nálepa, K., Bekárek, V., and Slouka, J., J. Prakt. Chem. 314, 815 (1972).
- Nálepa, K. and Slouka, J., Collect. Czech. Chem. Commun. 42, 2182 (1977).
- Nálepa, K., Acta Univ. Palacki. Olomuc., Fac. Rerum Nat. 61/ 65, 123 (1979/1980).
- Nálepa, K., Acta Univ. Palacki. Olomuc., Fac. Rerum Nat. 79, 47 (1983).
- 6. Nálepa, K. and Slouka, J., Pharmazie 39, 504 (1984).
- 7. Nálepa, K., Halama, A., Nevěčná, T., and Bekárek, V., *Collect. Czech. Chem. Commun.*, in press.
- Cornforth, J. W., *The Chemistry of Penicillin.* (Clarke, H. T., Johnson, J. R., and Robinson, W., Editors.) P. 688. Princeton, 1949.
- 9. Sheldrick, G. M., Acta Crystallogr. A46, 467 (1990).
- 10. Sheldrick, G. M., J. Appl. Crystallogr., to be published.
- 11. Nardelli, N., Comput. Chem. 7, 95 (1983).
- Johnson, C. K., Report ORNL-3794, Oak Ridge National Laboratory, Tennessee, 1971.
- Vilkov, L. V., Mastryukov, V. S., and Sadova, N. I., *Determination of the Geometrical Structure of Free Molecules*. Mir, Moscow, 1983.

Translated by Z. Trávníček