Preparation of 2-C-Hydroxymethyl-D-mannose and -D-glucose and Their Stereospecific and Irreversible Rearrangements to d-glucoand D-manno-Heptulose under the Conditions of the Bílik Reaction

L. PETRUŠ, Z. HRICOVÍNIOVÃ, M. PETRUŠOVÃ, and M. MATULOVÁ

Institute of Chemistry, Slovak Academy of Sciences, SK-842 38 Bratislava

Received 4 November 1996

Dedicated to Professor Stephen J. Angyal in honour of his 80th birthday

Molybdic acid-catalyzed epimerization of aldoses introduced twenty-five years ago [1] and now known as the Bílik reaction has become a universal method of preparation of formerly rare aldoses such as Dmannose [2], L-glucose [3], D-talose [4], L-ribose [5], Dand l-lyxose [5], etc. Attempts to utilize the reaction for epimerization of ketoses were not successful; only partial, general acid-catalyzed mutual isomerization of pentuloses [6] and hexuloses [7] was observed.

According to the mechanism of the Bílik reaction [8], the carbon skeleton of a starting aldose ... $-{ }^{4} \mathrm{CHOH}-{ }^{3} \mathrm{CHOH}-{ }^{2} \mathrm{CHOH}-{ }^{1} \mathrm{CHO}$ rearranges to that of epimeric aldose $\ldots-{ }^{(4)} \mathrm{CHOH}-{ }^{(3)} \mathrm{CHOH}-$ ${ }^{(1)} \mathrm{CHOH}-{ }^{(2)} \mathrm{CHO}$. The rearrangement has been used also for preparation of specifically labelled aldoses [9].

We now report on a new method of synthesis of D-manno- and D-gluco-heptulose, namely a molybdic acid-catalyzed carbon skeleton rearrangement of 2 -C-hydroxymethyl-D-glucose and -D-mannose, respectively. The communication describes also preparation of the branched-chain aldoses by the Sowden method applied to D-fructose.

Addition of nitromethane to D-fructose (I, Scheme 1) in the presence of sodium methoxide followed by treatment of intermediate sodium 1-deoxy-2-C-hydroxymethylhexitol-1-nitronates $I I$ and $I I I$ with sulfuric acid (Nef reaction) gave a mixture of $2-C$ -hydroxymethyl-D-mannose ($I V$) and -D-glucose (V) and the starting I. After removal of I by fermentation with baker's yeasts, 18% of branched-chain aldoses $I V$ and V in the ratio $c a .1: 1$ (by ${ }^{13} \mathrm{C}$ NMR spectroscopy) were obtained. Separation of the mixture on a column of Dowex 50W (Ba^{2+} form) afforded chromatographically pure $I V$ (sirup, $[\alpha]\left(\mathrm{D}, 20^{\circ} \mathrm{C}, \rho=20 \mathrm{~g} \mathrm{dm}^{-3}\right.$, water $\left.)=+11.0^{\circ}\right)$ and $V\left(\right.$ sirup, $[\alpha]\left(\mathrm{D}, 20^{\circ} \mathrm{C}, \rho=27\right.$

Scheme 1
$\mathrm{g} \mathrm{dm}^{-3}$, water) $=+27.4^{\circ}$, both giving satisfactory elemental analyses.

The structures of both branched-chain aldoses $I V$ and V were proved by NMR spectroscopy. The ${ }^{13} \mathrm{C}$ chemical shifts of both anomeric carbon atoms of compound $I V(\delta=95.2)$ were close to those of $\mathrm{D}-$ mannose ($\delta=95.0$ and 94.6 [10]). Similarly, the chemical shifts of both anomeric carbon atoms of $V(\delta=$ 99.3 and 93.0) were close to those of D -glucose ($\delta=$ 96.7 and 92.9 [10]). One-dimensional ${ }^{13}$ C DEPT and
${ }^{1}$ H NOESY spectra afforded additional support of the structures of $I V$ and V, particularly the presence of quaternary carbon atoms and the stereochemistry at them, respectively.

Treatment of branched-chain aldose $I V$ in 0.5% molybdic acid at $80^{\circ} \mathrm{C}$ for 3 h caused its complete transformation to D-gluco-heptulose ($V I$) and traces of d-manno-heptulose (VII). Heptulose VI was obtained after deionization of the reaction mixture with an anion exchange resin in the HCO_{3}^{-}form by crystallization in an 82% yield.

Similar treatment of compound V resulted in the formation of a $4: 1$ mixture (by ${ }^{13} \mathrm{C}$ NMR spectroscopy) of D-manno-heptulose (VII) and D-glucoheptulose ($V I$) not containing the starting material. Heptulose VII was obtained after column separation (Dowex 50W, Ba^{2+} form) in a 51% yield. In a control experiment when heptulose VII was treated at more severe conditions (1% molybdic acid, $95^{\circ} \mathrm{C}, 5 \mathrm{~h}$), a ca. 1:1 mixture of C-3 epimeric heptuloses $V I$ and $V I I$ was obtained. Branched-chain aldoses $I V$ and V were not detected in the mixture by means of ${ }^{13} \mathrm{C}$ NMR spectroscopy.

Examined physicochemical constants (m.p., $[\alpha]$ (D)) and ${ }^{13} \mathrm{C}$ NMR spectra of heptuloses $V I$ and $V I I$ were identical with those of the samples prepared by an independent procedure [11].

In conclusion, the observed irreversible transformation of branched-chain aldoses $I V$ and V to respective heptuloses $V I$ and $V I I$ catalyzed with molybdic acid is in accordance with the mechanism and thermodynamics of the Bílik reaction. The irreversibility of the
transformation is apparently a consequence of a substantially lower stability of $2-C$-hydroxymethylaldoses in comparison with that of 2-ketoses; the branchedchain aldoses, although expected, were not formed by treatment of the 2 -ketoses with molybdic acid. The transformation thus represents a new method of synthesis of ketoses. Further development of the method is in progress.

Acknowledgements. This work was supported by the Slovak Academy of Sciences, Grant No. 2/1234/96.

REFERENCES

1. Bílik, V., Voelter, W., and Bayer, E., Angew. Chem. 83, 967 (1971).
2. Bílik, V., Chem. Zvesti 26, 183 (1972).
3. Bílik, V., Chem. Zvesti 26, 187 (1972).
4. Bílik, V., Voelter, W., and Bayer, E., Liebigs Ann. Chem. 1974, 1162.
5. Bílik, V. and Caplovič, J., Chem. Zvesti 27, 547 (1973).
6. Stankovič, L., Bílik, V., Fedoroňko, M., and Königstein, J., Chem. Zvesti 29, 685 (1975).
7. Bílik, V. and Tihlárik, K., Chem. Zvesti 28, 106 (1974).
8. Hayes, M. L., Pennings, N. J., Serianni, A. S., and Barker, R., J. Am. Chem. Soc. 104, 6764 (1982).
9. Barker, R. and Serianni, A. S., Acc. Chem. Res. 19, 307 (1986).
10. Bock, K. and Pedersen, C., Adv. Carbohydr. Chem. Biochem. 41, 27 (1983).
11. Petruš, L., Bílik, V., Anderle, D., and Janeček, F., Chem. Zvesti 33, 636 (1979).

Translated by L. Petruš

