Addition-Cyclization Reactions of Hexa-2,4-dienoyl Isothiocyanate with Amines and Sodium Hydrogen Sulfide

aM. RUŽINSKÝ, aM. DZURILLA*, aP. KUTSCHY, and bV. KOVÁČIK

^aDepartment of Organic Chemistry, Faculty of Natural Sciences, P. J. Šafárik University, SK-041 67 Košice e-mail: ruzinsky@kosice.upjs.sk, dzurilla@kosice.upjs.sk, kutschy@kosice.upjs.sk

b Institute of Chemistry, Slovak Academy of Sciences, SK-842 38 Bratislava e-mail: chemkov@savba.sk

Received 9 April 1998

1,3-Thiazin-4-one derivatives were synthesized by boron trifluoride-catalyzed intramolecular cyclization of N-substituted N'-(hexa-2,4-dienoyl)thioureas and by the reaction of hexa-2,4-dienoyl isothiocyanate with sodium hydrogen sulfide. The structure of the prepared compounds was confirmed by their IR, 1 H and 13 C NMR spectra.

In our previous papers we have studied the synthesis of 1,3-thiazine derivatives by addition-cyclization reactions of α,β -unsaturated acyl isothiocyanates with amines [1, 2] and sodium hydrogen sulfide [3, 4], under various reaction conditions. The present work describes the study of the above reactions of hexa-2,4-dienoyl isothiocyanate with the formation of corresponding 6-(propen-1-yl)-1,3-thiazin-4-one derivatives (Va-Vf, Scheme 1).

Hexa-2,4-dienoic acid (I) was selected as a starting compound which was transformed via hexa-2,4-dienoyl chloride (II) to hexa-2,4-dienoyl isothiocyanate (III). According to the literature data, chloride II can be obtained by the action of thionyl chloride in benzene [5], phosphorous trichloride [6, 7], or phosphorous pentachloride [8] on acid I, in 50—60 % yield. The preparation of isothiocyanate III, by treatment of hexa-2,4-dienoyl bromide with lead(II) thio-

 $R = C_6H_5 (a), C_6H_4CH_3-4 (b), C_6H_4OCH_3-4 (c), \\ C_6H_4Cl-4 (d), C_6H_4COCH_3-4 (e), CH_2C_6H_5 (f)$ Scheme 1

^{*}The author to whom the correspondence should be addressed.

Table 1. Characterization of Compounds IVa-IVf, Va-Vf, and VI

Compound	Formula $M_{ m r}$	M.p./°C Yield/%		$w_{ m i}({ m calc.})/\% \ w_{ m i}({ m found})/\%$		
			C	Н	N	
IVa	$C_{13}H_{14}N_2OS$	129—132	63.38	5.73	11.37	
	246.3	89	63.56	5.86	11.49	
IVb	$C_{14}H_{16}N_2OS$	148—149	64.59	6.19	10.76	
	260.4	82	64.92	6.28	19.93	
IVc	$C_{14}H_{16}N_2O_2S$	163.5—165.5	60.85	5.48	10.14	
	276.3	85	61.02	5.63	10.31	
IVd	$C_{13}H_{13}N_2ClOS$	157—159	55.61	4.67	9.98	
	280.8	79	55.83	4.78	10.09	
IVe	$C_{15}H_{16}N_2O_2S$	197—199	62.48	5.59	9.71	
	288.4	88	62.57	5.71	9.92	
IVf	$C_{14}H_{17}N_3OS$	147—149	64.59	6.19	10.76	
	276.4	92	64.83	6.32	10.87	
Va	$C_{13}H_{14}N_2OS$	86—87	63.38	5.73	11.37	
	246.3	57	63.64	5.91	11.62	
Vb	$C_{14}H_{16}N_2OS$	101—103	64.59	6.19	10.76	
	260.4	62	64.73	6.31	10.98	
Vc	$C_{14}H_{16}N_2O_2S$	54—56	60.85	5.48	10.14	
	276.3	68	60.99	5.61	10.29	
Vd	$C_{13}H_{13}N_2CIOS$	110—112	55.61	4.67	9.98	
	280.8	55	55.84	4.71	9.99	
Ve	$C_{15}H_{16}N_2O_2S$	100—102	62.48	5.59	9.71	
	288.4	54	62.63	5.70	9.89	
Vf	$C_{14}H_{16}N_2OS$	153—155	64.56	6.19	10.76	
	260.4	66	64.81	6.28	10.91	
VI	$C_7H_9NOS_2$	83—84	44.89	4.85	7.48	
	187.3	37	44.99	4.92	7.68	

Table 2. IR Spectral Data of Compounds I—III, IVa—IVf, Va—Vf, and VI

G 1	$ ilde{ u}/\mathrm{cm}^{-1}$						
Compound	$\delta(ext{CH-}trans)$	NHCS	C=C	C=0	NH		
I	992	_	1605, 1629	1671	_		
II	1002	_	1594, 1638	1740			
III	1003	_	1504, 1640	1687	_		
IVa	1007	1145, 1350, 1515	1592, 1632	1673	3415		
IVb	1000	1140, 1340, 1515	1592, 1635	1677	3412		
IVc	995	1135, 1335, 1515	1598, 1627	1670	3415		
IVd.	1003	1140, 1342, 1520	1590, 1635	1680	3413		
IVe	960	1145, 1345, 1520	1597, 1625	1677	3412		
IVf	1005	1160, 1340, 1530	1615, 1638	1681	3418		
Va	978	= "	1615	1694	3361		
Vb	970	-	1625	1703	3370		
Vc	957	_	1605	1690	3372		
Vd	965		1615	1698	3370		
Ve	955	_	1615	1675, 1695	3368		
Vf	968	_	1622	1695	3373, 3420		
VI	960	1420	1605	1710	3348		

cyanate in pentan-3-one at $60\,^{\circ}$ C in 70 % yield was also described [9]. We have found that chloride II can be effectively prepared in the higher yield (92 %) by refluxing of acid I with 2 equivalents of thionyl chloride without solvent. Subsequent reaction of II with potassium thiocyanate in anhydrous acetone in 25 min at room temperature afforded 79 % yield of isothiocyanate III. α,β -Unsaturated acyl isothio-

cyanates readily react with primary and secondary amines with the formation of stable thioureas [1, 2, 10-15], which are suitable intermediates in the synthesis of 1,3-thiazines [1, 2, 10, 11], thiouracils [10, 12], thiazolines [13], and benzothiazoles [13-15]. Treatment of isothiocyanate III with amines in benzene or acetone for 15-20 min afforded the corresponding N-substituted N'-(hexa-2,4-dienoyl)thioureas (in the for-

Table 3. 1 H NMR Spectral Data of Compounds I-III, IVa-IVf, Va-Vf, and VI

C1	δ							
Compound	CH ₃	CH ₂ CH		СН=СН	H_{arom}	NH	Other	
I	1.87 (d, J = 5.0 Hz)	_		5.78 (d, J = 15.0 Hz); 6.10-7.35 (m, 3H)			11.27 (s, 1H, OH)	
II	1.92 (d, J = 5.2 Hz)	_	_	6.00 (d, $J = 15.1 \text{ Hz}$); 6.17—7.45 (m, 3H)		_	-	
III	1.96 (d, $J = 4.4 \text{ Hz}$)	-	_	5.95 (d, $J = 15.0 \text{ Hz}$); 6.23—7.46 (m, 3H)	-		_	
IVa	1.94 (d, J = 5.0 Hz)	_	_	5.98 (d, $J = 14.4 \text{ Hz}$); 6.31—7.52 (m, 3H)	7.35-7.85 (m, 5H)	9.35 (s) and 11.73 (s)		
IVb	1.89 (d, J = 5.1 Hz)	_		5.84 (d, J = 14.4 Hz); 6.24-7.50 (m, 3H)	7.10-7.60 (m, 4H)	9.03 (s) and 12.50 (s)	2.36 (s, 3H, CH ₃)	
IVc	1.88 (d, J = 4.9 Hz)	-		5.88 (d, $J = 14.6 \text{ Hz}$); 6.26—7.50 (m, 3H)	6.88-7.65 (m, 4H)	9.36 (s) and 12.48 (s)	3.82 (s, 3H, OCH ₃)	
IVd	1.89 (d, J = 4.7 Hz)	_	_	6.21 (d, $J = 14.8 \text{ Hz}$); 6.25—7.52 (m, 3H)	7.20-7.80 (m, 4H)	8.10 (s) and 11.30 (s)		
IVe	1.88 (d, J = 5.0 Hz)	-	-	6.25 (d, J = 14.9 Hz); 6.40-7.50 (m, 3H)	7.20—8.15 (m, 4H)	8.45 (s) and 11.61 (s)	2.57 (s, 3H, CH ₃ CO)	
IVf	1.88 (d, J = 5.1 Hz)	_	_	5.82 (d, J = 14.4 Hz); 6.18-7.32 (m, 3H)	7.04-7.63 (m, 5H)	9.20 (s) and 11.20 (s)	$4.88 \text{ (d, } J = 5.1 \text{ Hz, CH}_2)$	
Va	1.63 (d, J = 6.4 Hz)	2.82 (m)	4.18 (m)	5.58 (m, 2H)	6.70—7.48 (m, 5H)	11.10 (s)		
Vb	1.69 (d, J = 6.1 Hz)	2.95 (m)	3.91 (m)	5.57 (m, 2H)	6.75-7.25 (m, 4H)	11.90 (s)	2.35 (s, 3H, CH ₃)	
Vc	1.67 (d, J = 5.9 Hz)	2.89 (m)	3.99 (m)	5.55 (m, 2H)	6.75-7.10 (m, 4H)	11.88 (s)	3.79 (s, 3H, OCH ₃)	
Vd	1.68 (d, J = 6.3 Hz)	2.90 (m)	3.90 (m)	5.56 (m, 2H)	6.75-7.43 (m, 4H)	10.70 (s)		
Ve	1.69 (d, J = 6.2 Hz)	2.91 (m)	3.91 (m)	5.55 (m, 2H)	6.85-8.05 (m, 4H)	11.01 (s)	2.56 (s, 3H, CH ₃ CO)	
Vf	$1.71 \; (d, J = 6.1 \; Hz)$	2.75 (m)	3.97 (m)	5.58 (m, 2H)	6.85-7.75 (m, 5H)	10.60 (s)	4.61 (d, J = 5.0 Hz, CH2)	
VI	1.75 (d, $J = 6.0 \text{ Hz}$)	2.97 (m)	4.13 (m)	5.63 (m, 2H)	- ' '	9.65 (s)		

Table 4. ¹³C NMR Spectral Data of Compounds I—III, IVa, Va, and VI

Compound	δ							
	CH ₃	CH ₂	СН	C=0	Other			
I	18.7	_	118.3, 129.8, 140.6, 147.3	172.9				
II	19.1	-	123.2, 129.3, 145.2, 151.2	166.0				
III	19.0	_	121.2, 129.5, 144.1, 149.7	160.9	146.6 (NCS)			
IVa	18.8	_	119.1, 129.6, 142.2, 146.8	166.5	124.3, 126.8, 128.8, 137.9 (C _{arom}), 178.9 (C=S)			
Va	17.7	40.1	40.7	169.9	121.6, 124.5, 126.8, 128.9, 130.8, 146.9 (Carom, CH=CH), 151.0 (C=N)			
VI	17.8	38.0	44.5, 125.5, 132.0	167.1	198.8 (C=S)			

Scheme 2

mer case IVa—IVd and IVf, in the latter one IVe) in 79—92 % yield (Scheme 1, Table 1).

Boron trifluoride-catalyzed cyclization of thioureas IVa-IVf in chloroform resulted exclusively in the formation of the 2-substituted 6-(propen-1-yl)-5,6-dihydro-4H-1,3-thiazin-4-ones (Va-Vf, Scheme 1, Table 1). The IR and 1H NMR spectra of compounds I-III, IVa-IVf, and Va-Vf (Tables 2 and 3) as well as 13 C NMR spectra of compounds I-III, IVa, and Va (Table 4) are in full accord with the proposed structures of synthesized products.

Five- and six-membered heterocycles containing sulfur and nitrogen atoms easily undergo the Dimroth rearrangement by treatment with acids or bases [16, 17]. We have examined the reaction of thiazine Vf with 2 M sodium hydroxide solution in water. It was found that instead of rearrangement, the hydrolysis took place with benzylthiourea and hexa-2,4-dienoic acid (I) being the only reaction products. Monitoring of the reaction by t.l.c. revealed that in the first step thiazine ring of Vf was opened with transient formation of thiourea derivative IVf, which was subsequently hydrolyzed to final products. This assumption was confirmed by the reaction of thiourea IVf with 2 M-NaOH, resulting in the formation of benzylthiourea and hexa-2,4-dienoic acid (I).

Addition-cyclization reaction of α,β -unsaturated isothiocyanates with sodium hydrogen sulfide represents a useful method for the preparation of 6-substituted 2-thioxotetrahydro-4H-1,3-thiazin-4-ones [3, 4]. Nucleophilic addition of sodium hydrogen sulfide to hexa-2,4-dienoyl isothiocyanate afforded two products, namely 6-(propen-1-yl)-2-thioxotetrahydro-4H-1,3-thiazin-4-one (VI) and hexa-2,4-dienoic acid (I), separable by column chromatography on silica gel.

The reaction was studied in methanol and acetone as solvents, with respective 37 % and 29 % yields of thiazine VI. The formation of acid I can be explained by partial hydrolysis of transiently formed sodium N-(hexa-2,4-dienoyl)dithiocarbamate. The structure of compound VI was confirmed by elemental analysis, IR, 1H and ^{13}C NMR spectra (Tables 1—4) as well as by mass spectrum. The main patterns of the fragmentation of molecular ion are shown in Scheme 2.

EXPERIMENTAL

Melting points were determined on a Kofler hotstage apparatus. Infrared spectra were recorded on an IR-75 (Zeiss, Jena) spectrometer in chloroform in the $\tilde{\nu}$ region 400—4000 cm⁻¹. ¹H NMR spectra were measured on Tesla BS 487 (80 MHz) in deuteriochloroform solutions (I—III, IVa—IVd, IVf, Vb—Vf, VI) and DMSO solution (IVe, Va). 13C NMR spectra were measured on BS 567 (25.15 MHz) in deuteriochloroform solutions (I—III, IVa, Va, VI). Chemical shifts are given as δ values with reference to tetramethylsilane. The mass spectrum of compound VI was recorded on a JMS-100 D spectrometer (Jeol) at ionization energy 70 eV. The reaction course was monitored by t.l.c. on silufol plates (Kavalier, Czech Republic). Hexa-2,4-dienoic acid (I) was used as commercial chemical (Aldrich).

Hexa-2,4-dienoyl Chloride (II)

A mixture of 22.4 g (0.2 mol) of hexa-2,4-dienoic acid (I) and thionyl chloride (47.6 g, 29 cm³, 0.4 mol) was heated under reflux for 1 h. Hexa-2,4-dienoyl chloride was isolated by distillation under reduced pres-

sure. Yield 24.1 g (92 %), b.p.(800 Pa) = $50 \,^{\circ}$ C.

Hexa-2,4-dienoyl Isothiocyanate (III)

A solution of KSCN (9.70 g; 0.1 mol) in dry acetone (100 cm³) was added in 5 min to hexa-2,4-dienoyl chloride (13.06 g; 0.1 mol). The mixture was stirred for 20 min at room temperature, diluted with benzene (60 cm³), filtered, solvent evaporated and the oily residue was distilled under reduced pressure. Yield 12.1 g (79 %), b.p.(667 Pa) = 84 °C.

N-Substituted N'-Hexa-2,4-dienoylthioureas (IVa-IVf)

The solution of corresponding amine (5 mmol) in dry benzene (5 cm³) was added dropwise to a stirred solution of hexa-2,4-dienoyl isothiocyanate (0.77 g; 5 mmol) in dry benzene (5 cm³) and stirring was continued for 1 h at room temperature. The formed precipitate was filtered off, dried and crystallized from ethanol.

2-Substituted 6-(Propen-1-yl)-5,6-dihydro-4H-1,3-thiazin-4-ones (Va—Vf)

Boron trifluoride etherate (0.42 g, 0.37 cm³, 3 mmol) was added dropwise to a solution of corresponding thiourea *IVa—IVf* (1.5 mmol) in chloroform (5 cm³). After standing for 30 min at room temperature the reaction mixture was diluted with chloroform (10 cm³), washed with a 4 % solution of sodium hydrogen carbonate (10 cm³), the chloroform layer was separated and dried with anhydrous sodium sulfate. The solvent was evaporated and the residue crystallized from ethanol.

6-(Propen-1-yl)-2-thioxotetrahydro-4H-1,3-thiazin-4-one (VI)

A solution of sodium hydroxide (0.12 g; 3 mmol) in acetone (15 cm³) was saturated with hydrogen sulfide (0.10 g; 3 mmol). Then a solution of hexa-2,4-dienoyl

isothiocyanate (0.31 g; 2 mmol) in acetone (15 cm³) was added portionwise with stirring and water cooling. The mixture was diluted with water (60 cm³), formed precipitate was filtered off, dried and chromatographed on silica gel (benzene—acetone, $\varphi_r = 7$ 1), to yield 140 mg (37 %) of VI and 70 mg (31 %) of I. Mass spectrum, m/z ($I_r/\%$): 187 (M⁺, 78), 95 (100), 86 (62), 68 (48).

REFERENCES

- 1. Dzurilla, M., Kristian, P., and Kutschy, P., Collect. Czech. Chem. Commun. 45, 2958 (1980).
- Dzurilla, M., Kutschy, P., and Kristian, P., Synthesis 1985, 933.
- Dzurilla, M. and Kristian, P., Collect. Czech. Chem. Commun. 41, 1388 (1976).
- 4. Dzurilla, M., Kristian, P., and Kutschy, P., Collect. Czech. Chem. Commun. 42, 2938 (1977).
- 5. Staudinger, S., Chem. Ber. 56, 710 (1923).
- Rupe, M. and Schaerer, J., Helv. Chim. Acta 8, 857 (1924).
- Auwers, D. and Heyna, A. K., Liebigs Ann. Chem. 434, 148 (1923).
- 8. Hofmann, A. W., Liebigs Ann. Chem. 110, 138 (1892).
- Lipp, M., Dallacker, F., and Koenen, G., Chem. Ber. 91, 1960 (1958).
- Dzurilla, M., Kutschy, P., Imrich, J., Koščík, D., and Kraus, R., Collect. Czech. Chem. Commun. 56, 1287 (1991).
- Dzurilla, M., Kutschy, P., Tewari, J. P., Ružinský, M., Šenvický, S., and Kováčik, V. Collect. Czech. Chem. Commun. 63, 94 (1998).
- Dzurilla, M., Kutschy, P., and Koščík, D., Collect. Czech. Chem. Commun. 52, 2260 (1987).
- Kutschy, P., Dzurilla, M., Kristian, P., and Kutschyová, K., Collect. Czech. Chem. Commun. 46, 436 (1981).
- Dzurilla, M., Kristian, P., Imrich, J., and Štec, J., Collect. Czech. Chem. Commun. 48, 3134 (1983).
- Dzurilla, M., Kutschy, P., Imrich, J., and Brtoš, S., Collect. Czech. Chem. Commun. 59, 2663 (1994).
- 16. Dimroth, O., Liebigs Ann. Chem. 364, 183 (1909).
- 17. Wahren, M., Z. Chem. 9, 241 (1969).