Proper Ways of Comparison of Two Laboratory Methods*
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For statistically correct decision whether two laboratory methods provide concordant results when
measuring the same objects, only those regression techniques are reliable, which respect the errors
of both compared variables or are not influenced by them. Overview of such techniques is given in
this paper. Ordinary least-squares regression may provide biased results leading to wrong decision

making.

Statistical comparison of two analytical methods
{or any laboratory methods) is a persistent task in an
analytical laboratory and one of the most important
steps in the method wvalidation process. Such method
comparison study is usually made by regression. A se-
ries of results for the same measurement objects is ob-
tained by the investigated and the reference methods.
The results found by the reference method are usually
plotted on the horizontal (X) axis, and those related
to the investigated method are plotted on another
axis, usually vertical (Y'). Then the slope is tested with
respect to the theoretical value 1.0 by the t-test. If a
significant difference is found, then the proportional
systematic error is indicated.

The t-test is also used to prove whether the inter-
cept is or is not significantly different from zero. A
significant difference is the indication of the constant
systematic error. Neither of the mentioned statistical
tests can reveal by itself which one of the compared
methods is correct or incorrect.

In this paper we will consider that the only viola-
tion of the obligatory assumptions on the least-squares
method is that both regression variables are subject to
errors, which enables us to concentrate solely on this
problem. We have proved by means of used software
that in the problem of comparison of two cholesterol
methods demonstrated in further text, only this type
of violation occurred.

Common ordinary linear least-squares regression
(OLS) is often used for the mentioned tests but in
general it provides biased estimates of the regression

parameters and their standard deviations, necessary
for the t-test, which leads finally to an improper de-
cision. It is due to the violation of the presupposed
condition in the OLS that one of the methods, rep-
resenting independent variable, is error-free. Conse-
quently, a better regression method has to be applied.
It should either respect the errors present in both vari-
ables, or to be uninfluenced by them, which is typical
for a nonparametric or robust approach. The objective
of this work is to give an overview of mostly applied
statistical techniques and relevant software, capable
to fulfill properly the methods comparison task. Such
techniques and software can be of course used for all
other purposes at which all considered variables are
subject to random errors.

EXPERIMENTAL

From the values ¢ (mmol dm~2) of data on the con-
centration of total cholesterol (Chol), HDL-cholesterol
(HDL), and triacylglycerols (Tg) in blood of 288 pa-
tients, the corresponding LDL-cholesterol (LDL) val-
ues were calculated according to the Friedewald for-
mula

LDLcate = Chol — HDL — Tg/2.2 (1)

All data were measured by two automatic analyzers,
namely Konelab 20 and Hitachi 911. Thus, two se-
ries of the calculated values resulted: LDL,.K for
Konelab and LDL....H for Hitachi. Determinations
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in serum were based on enzymatic assays for Chol and
Tg (Roche) and HDL (Genzyme) with spectropho-
tometric final measurement. Since the database was
used retrospectively, duplicate measurements were not
available.

RESULTS AND DISCUSSION

Deming method is based on structural model in
which the observed (measured) variables X; and Y;
are composed of the corresponding latent erpected
(“true”) values z; and y; and random errors u; and e;,
respectively, where u; and e; are supposed to be in-
dependent and normally distributed with a zero mean
value and a constant standard deviation [1]. Then

Xi=mi+u (2)
Yi=y +e (3)

and the linear regression model can be expressed by
two equivalent relationships

y=0o+ Pz =7+ Bi(z —I) (4)

where § and Z are the means of all coordinates y;
and z;, respectively, and regression parameter Sp =
7 — ZB1. The estimates by and b; of the regression
parameters 3o, 31 are calculated by means of the pa-
rameter § or its reciprocal value A, representing the
ratio of the error variances

§=V(e)/V(u) = s2/s (8)
A=V(W)/V(e) = si/se (6)

The case when § = 1 and V(e) = V(u) is of a
special importance and is called orthogonal regression
(or Deming regression in a narrow sense), at which
the least-squares minimization is made in the direction
perpendicular to the regression line. When A = 0 and
V(1) = 0, then the OLS method is valid as the limiting
case of Deming regression; when § = 0 and V'(e) = 0,
then another limiting case arises and the OLS is valid
for the X = f(Y) dependence.

If auxiliary variable L is defined as L = (Syy —
6Sxx)/(2Sxy), where Syy and Sxx are the corre-
sponding variances for Y and X, respectively, and
Sxy is the corresponding covariance, then

by = L+ (L? +6)/? (7)

bo=Y -0 X (8)

Relatively complicated and not easily accessible is
the calculation of standard errors of the regression

parameters, sp; and spo. However, for normally dis-
tributed measurement errors of both variables and as-
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suming homoscedasticity (constant error variances),
Fuller [1] gives the unambiguous estimates of sp1 and
sp0, which, as we have proved, is consistent with the
results obtained by the Analyse-it software [2]. The
mentioned two conditions need not be met when a
nonparametric alternative of the standard errors esti-
mates is made by the jackknife method, which is de-
scribed in detail in Ref. [3]. Method Validator [4] as
well as CBstat [5], both available on the web, use just
this calculation approach.

Bivariate least-squares regression (BLS) is the
generic name for a set of techniques used for regress-
ing bivariate data, i.e. whenever a regression method
is applied to data containing errors in both axes [6].
Specifically, the BLS derived in Refs. [6, 7] is based on
the approach described in [8] minimizing the sum, S,
of the weighted residuals, defined as

S:Zu;Rin, i=1,....n (9)
i=1

R, =[Y; — f(Xi,b3)], j=1L...,m (10)

wri = 1/s%; = 1/[s%; + sk — 2bicov (X, Y3)] (11)

The residuals were expressed originally for m regres-
sion parameters [8], but weights wg; are expressed
here for m = 2, needed for the method comparison.
Minimization, leading to nonlinear equations, is made
in the iterative way [6-—9]. The BLS is effectively used
in software package Calibro 2000 [9, 10] and the MAT-
LAB code is listed in [7]. Despite the BLS definition
[7], by which e.g. the Deming method can also be con-
sidered a BLS technique, only the variants described in
[6—9)] are designated in this way. The BLS can treat
even a heteroscedastic case (with nonconstant vari-
ance) and the user of Calibro 2000 can put different
weights not only for each regression variable, but also
for every individual point i, if desired. On the other
hand, in many practical situations the determination
of the weights is difficult and even obtaining the vari-
ances ratio for compared variables is cumbersome or
impossible. In such situations, equal weights should be
adopted, consistent with the recommended choice § =
1 in Deming regression when the ratio of variances is
not accessible.

In the Passing—Bablok regression procedure for
methods comparison (P-B), the slopes of the straight
lines between any 2 points from the set of n regression
points are calculated. The number of possible slopes
is N < n(n —1)/2, since from all possible slopes those
having oo and 0 values have to be subtracted. Al N
slope values are calculated by the equation

Sii= (i —v;)/(zi —xy) for 1<i<j< N (12)
and sorted in the increasing order. The P-B slope b
is then obtained as the shifted median
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COMPARISON OF TWO LABORATORY METHODS

Table 1. Regression Parameters, their Standard Deviations and 95 % Confidence Intervals for the Regression Dependence

LDL¢aic-K = bo + b1. LDLca1c-H (Model: y = bg + biz)*

Way of calculation b1 bo Sp1 Sbo biL biu bor, bou

OLS (Analyse-it) 0.9946 —-0.0436 0.0095 0.0341 0.9759 1.0131 —-0.1107 0.0236
Deming (Analyse-it) 1.0077 —0.0886 0.0097 0.0346 0.9987 1.0268 —0.1566 —0.0206
Deming (Meth. Validator) 1.008 —0.0886 - - 0.986 1.029 —0.1615 —0.0156
BLS (Calibro 2000) 1.0077 —0.0886 0.0096 0.0342 0.9889 1.0266 -0.1560 —0.0212
P-B (Analyse-it) 1.0068 —0.0959 - - 0.9863 1.0285 —0.1741 —0.0305
P-B (Meth. Validator) 1.007 —0.0958 - - 0.986 1.028 —0.1741 —0.0305

*The symbols byy, and bjy denote the limits of the confidence interval for the slope, bgr, and bgy are used to confine the intercept
confidence limit. Variances ratio A = 1 was used for the Deming and BLS methods. Confidence intervals not containing the value
relevant to concordant methods are indicated in italics. Number of tabulated decimal digits is given by the respective software.

b1 = S(N+1)/2+K for N odd (13)
by = exp{[log(Sny2+k) + log(Sn/214k)]/2}

for N even (geometric mean) (14)
where K (representing the shift) is the number of Sj;
values below —1. The intercept by is obtained by calcu-
lating the median of all (y; — byz;) values. Confidence
intervals for the slope and intercept are derived also
by calculating the index of the sorted values, both for
the upper and lower limits, as described in {11]. The
standard errors are not obtained in this purely non-
parametric procedure.

The Passing—Bablok procedure is applicable with-
out the need to use any variance estimates. Its original
version tests the agreement between two laboratory
methods [11], therefore it is called agreement P-B vari-
ant. It works well even if the variables errors are not
normally distributed, and the nonconstant variance
over the sampling range does not have any harmful in-
fluence on results. However, Linnet {12) claims that the
P-B results are without any bias only when a rather
unusual condition § = b? is fulfilled (the correspond-
ing ratio of the constant standard deviations equals
the squared slope). Despite the mentioned drawback,
the P-B procedure is often used, mainly in biochemical
and clinical chemistry literature. An extremely useful
feature of this procedure is its robustness with respect
to the outliers.

We have made a full comparison of the results
obtained by proper statistical techniques as well as
the OLS regression using various analytes. Commer-
cially available software and own QuickBasic pro-
grams, composed according to the above theoretical
relationships, were used for this purpose. As an ex-
ample, the results of indirect determination of LDL
cholesterol are summarized in Table 1. Close inspec-
tion of this table reveals a constant systematic error
since the intercept confidence interval does not con-
tain zero (results are indicated in italics). However,
the ordinary least-squares regression fails to give this
decision. The mentioned results obtained by our pro-
grams and Analyse-it sofware were in a full agreement.

An important question is why and in which way
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a correction can be made in case when a systematic
error is indicated in the performed method compari-
son study. For example, such a situation is common in
clinical laboratories where often only one automatic
analyzer is used in case of lower amount of samples,
however, when the number of samples increases, then
another analyzer (often of different brand or made by
a different producer) comes into use. In order to re-
ceive harmonized results, it is then necessary to make
a correction of the results obtained by one analyzer
with respect to another. The most frequent approach
is to make the correction directly by using the received
regression equation. For the case treated in this pa-
per, based on the regression coefficients for orthog-
onal (Deming) regression or the BLS (Table 1), the
LDL results received by means of the Hitachi ana-
lyzer can be recalculated (i.e. corrected) to be valid
for the Konelab analyzer by the following equation:
LDLcae K = —0.0886 + 1.0077LDLgaic-H. If the op-
posite recalculation is needed, then the inverse lin-
ear equation has to be applied, namely LDLeyec H =
0.0879 + 0.9924LDL... K, which can be easily ob-
tained by rearranging the previous equation (the in-
tercept is now —bg/b; and the slope is 1/b1).

Another approach for expressing the mentioned
correction is based on the bias plot (difference plot)
[13], well known in clinical chemistry. where the dif-
ferences (Y; — X;) are calculated for all pairs 4, 1 =
1,...,n. This way of calculation is equivalent to the
regression model y = by + z, with the fixed slope
b1 = 1, so that it can be used when the systematic
error exists in the intercept (bo significantly differ-
ent from zero), but it is incorrect for the cases when
the slope is significantly different from 1. Bias plot
is optional in several statistical software packages. In
our case the significant bias equal to —0.062 was dis-
covered by Analyse-it, which leads to the corrections
LDLcac-K = LDLcgcH — 0.062 and LDLcae-H =
LDL..,..K — 0.062; these corrections are constant in
the whole range of the variable values.

CONCLUSION

The most frequent statistical techniques for com-
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parison of two analytical methods are: a) Deming re-
gression and orthogonal regression as its useful variant
— when the estimates of the variances of compared
methods are unknown, b) bivariate least-squares re-
gression, and ¢) the Passing—Bablok rank method.
Some software, namely Analyse-it, Calibro, Method
Validator or CBstat make such calculations easy and
provide also graphical outputs.
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