An Approach to Adaptive Control of a CSTR
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The paper deals with continuous-time adaptive control of a continuous stirred tank reactor. A non-
linear model of the plant is approximated by an external linear model with recursively estimated param-
eters. Both, one degree of freedom and two degrees of freedom control system configurations are consid-
ered. Resulting controllers ensure internal properness and stability of the control system as well as
asymptotic tracking of the step reference and step load disturbance attenuation. The design procedure is
based on the polynomial method. An application of the L.Q control technique yields a control law penal-
izing the control input changes. The adaptive control is tested by simulation means.

Continuous stirred tank reactors (CSTRs) are cen-
tral components of many plants in the chemical indus-
try. From the system-engineering point of view, they
belong to a class of nonlinear systems where both steady-
state and dynamic behaviour are nonlinear. This often
causes conventional control methods to be unsatisfac-
tory. Moreover, when strongly exothermic reactions
take place in the reactor, the reactant temperature may
exhibit high sensitivity to control input changes. There-
fore, the control system should be able to accept both
the system nonlinearity as well as the sensitivity. This
requirement can be met by using adaptive control with
parallel restriction of control input changes.

The paper presents one approach to continuous-time
adaptive control of a CSTR. A nonlinear model of the
process is approximated by an external linear model
(ELM) with recursively estimated parameters. Since the
controlled process input and output derivatives cannot
be measured directly, differential filters and filtered
variables are established substituting the primary var-
iables, see e.g. [1]. The filtered variables, inclusive of
their derivatives are then measured at discrete time
intervals and used in the recursive identification proce-
dure.

The one degree of freedom (1DOF) and two degrees
of freedom (2DOF) control system configurations are
considered, see e.g. [2]. The reference signal is consid-
ered to be from a class of step or exponential functions.

For the controller design, the polynomial approach
is used, see e.g. [3, 4]. Requirements on the control sys-
tem properties are formulated as its internal proper-
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ness and stability and asymptotic tracking of a refer-
ence and step load disturbance attenuation. Using the
polynomial approach, the resulting controllers are ob-
tained by a solution of polynomial Diophantine equa-
tions with a stable polynomial on the right sides. Fur-
ther, the LQ control technique is applied to restrict the
control input changes. This procedure is described in
[6—7]. Stable right sides of polynomial equations are
then given by spectral factorizations. This procedure
vields strictly proper controllers.

The control of a CSTR based on the above proce-
dure is tested on the nonlinear model described by four
nonlinear differential equations, see e.g. [8, 9].

THEORETICAL

ELM is chosen on the basis of any preliminary
knowledge of dynamic behaviour of the controlled sys-
tem. This model is described by differential equation in
the time domain

a(o) y(1) =b(o)u(r) ()

where o is the derivative operator and a, b are polyno-
mials in o. Considering zero initial conditions and us-
ing the Laplace transform, the ELM is represented in
the complex domain by

Y(s)=%v(s) @)
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where s is the complex variable and Y and U denote the
Laplace transforms of y and ©. Both @ and b are now
coprime polynomials in the form

dega ) degb .
a(s): Z a; Sl) b(S)= Z bjS‘} (3)
=0 j=0

where a(s) is a monic polynomial (@gego = 1). Assuming
the condition deg b < dega, the transfer function in eqn

@)
b(s)
a(s)

G(s) = @

is proper.

The method of ELM parameter estimation has been
analyzed e.g. in [1]. Since the derivatives of both input
and output variables cannot be directly measured, fil-
tered variables 1 and y; are established as the outputs
of filters

c(0) udt) = u(@®), cla) y: (@) = y@), ®)

where c(0) is a stable polynomial in o which fulfils the
condition deg ¢ > deg a. Note that time constants of the
filters ¢(o) must be smaller than time constants of the
model. Since the latter are unknown at the beginning of
the estimation procedure, it is necessary to choose the
filter time constants, selected a priori, sufficiently small.

It can be easily proven that the transfer behaviour
between the filtered and between nonfiltered variables
is equivalent. This fact enables to employ the filtered
variables for the ELM parameter estimation. If these
are computed via filters (5) in discrete time intervals
tk=k1,k=0,1,2, .., where 7, is the sampling period,
then, denominating deg ¢ = n and deg b = m, and es-
tablishing the regression vector

e T(tk) = [_ Y (tk)’ - yp)(tk)) “ery _y§n-1)(tk)’

(6)
ue(t), uf ), ..., w1
the vector of ELM parameters
0Tty = lag, ay, .., @y_1, bo, b1, ..y b,y (7)
can be recursively estimated from the equation
¥ (8 = 8(t) B(t) + £(ty) €)

where ¢ expresses the difference between initial condi-
tions of filtered and nonfiltered variables.

Considered control system configurations are depict-
ed in Figs. 1 and 2. The 1DOF control configuration
contains only a feedback controller. The controller in
the 2DOF control configuration contains also a feed-
forward part. Here, G is the ELM with the transfer func-
tion (4), Q and R are the feedback and feedforward con-
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Fig. 1. 1DOF control system configuration.

Fig. 2. 2DOF control system configuration.

trollers, respectively. In both schemes, w is the refer-
ence signal, v is the load disturbance, and « is the con-
trol variable. The reference w is considered to be a step
or exponential function with a transform function ex-
pressed in the form

_ ()
sf(s)

W(s) 9

where £, f,, are polynomials and f,, is a stable polyno-
mial. The load disturbance v is assumed as a step func-
tion. For such reference and disturbance, transfer func-
tions of the controllers Q and R have the form

q(s) Ris)=_)
s p(s) ’ ) s p(s) (10)

0(s) =
where g, r, and p are polynomials in s.

The controller design described in this section is
based on the polynomial approach. General conditions
required to govern the control system properties are
formulated as internal properness and stability of the
control system, asymptotic tracking of the reference and
load disturbance attenuation. The procedure to derive
admissible controllers can be carried out as follows.

A feedback controller given by a solution of the pol-
ynomial equation

a(s)sp(s) + b(s)q(s) = d(s) (1D
with a stable polynomial d on the right side ensures the
stability and load disturbance attenuation in both 1DOF
and 2DOF control system configurations, and, in addi-
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Table 1. Parameters, Input and Initial Conditions

P. DOSTAL, M. BAKOSOVA, V. BOBAL

V,=12m? A =55m?
V,=0.64m?

Q, = 0.08 m* min™
Q¢ = 0.03 m® min™?
o, = 985 kg m™

p. = 998 kg m

Cpr = 4.05 kd kgt K
Cpe = 4.18 kI kg K™

EJR = 13477TK
E,/R = 15290 K

U=435kI m2min ' K
k1o = 5.616 x 108 min!
koo = 1.128 x 10'® min™

hy = 4.8 x10*kJ kmol™
ho = 2.2 x10* kdJ kmol™

Car = 2.85 kmol m
cpr = 0 kmol m™®

T, =323K

T,.= 293K

5 = 0.1649 kmol m™
¢f = 0.9435 kmol m~3
Ts=350.19K

T5 = 330.55 K

tion, asymptotic tracking in the 1DOF control configu-
ration. The asymptotic tracking in the 2DOF control
system is provided by the feedforward controller given
by a solution of the polynomial equation
z(s) s + b(s) r(s) = d(s) (12)
where 2(s) is an unknown additional polynomial.

The control system satisfies the condition of inter-
nal properness if the transfer functions of all compo-
nents are proper. Degrees of the controller polynomials
have then to fulfil inequalities

degg<degp + 1l,degr<degp +1 (13)

Taking into account relations (13), the condition deg
b < deg a, and the solvability of eqns (11) and (12), it is
possible to derive that the degrees of polynomials g and
r are

degg = dega,degp >dega—1,degr=0 (14)

Moreover, the equality 7y = go can be easily proved.

The controller parameters are then obtained via
solutions of polynomial equations (11), (12) and depend
upon coefficients of the polynomial d. The next prob-
lem is finding a stable polynomial d providing the ac-
ceptable stabilizing controllers.

For application of LQ control technique, the poly-
nomial d is sought as a product of two stable polynomi-
als g and n in the form

d(s) = gls) n(s) (15)

The first polynomial g is calculated from spectral
factorization

(sals))* @ (sals)) + b*(s) ub(s) = g*(s) g(s) (16)
where the asterisk denotes a conjugate polynomial. The
polynomial g is well known from the LQ control theory
(see e.g. [2, 5]). There, the poles which minimize an in-
tegrand in the quadratic cost function

joo
J=t I{E*(s)ﬂE(s)+l7*(s)¢(7(s)}ds a”n
27 j e
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are roots of the polynomial g. Here, E(s) is the trans-
form of the tracking error e(#), U(s) denotes the trans-
form of the control input derivative and u and ¢ are
weighting coefficients.

The polynomial 7 ensures properness of the controller
and it is given as a stable part of spectral factorization

n*(s) n(s) = a*(s) als) 18

Polynomials g, r, and p are then given by solutions

of polynomial equations

a(s)s p(s) + b(s) q(s) = g(s) nis) (19

2(s)s + b(s) r(s) = gls) n(s)
1

(20)

The transfer functions (10) are strictly proper. The
degrees of the right sides of eqns (19) and (20) are given
by deglg(s)n(s)] = 2deg als) + 1. Taking into account
condition (14) and the relation deg[sp(s)] = deglg(s)n(s)]
—degals) = deg a(s) + 1, the strict properness of both
transfer functions in eqn (10) is evident.

SIMULATIONS

Consider a CSTR with the first-order consecutive
exothermic reactions according to the scheme
A—4 B2 ,C and with a perfectly mixed cooling
jacket. Using usual simplifications, the model of the CSTR
is deseribed by four nonlinear differential equations

d_;A_:_(g_rw klch +%cAf @1
.ds_th_(‘Q/—:+k2}cB +kjcy +%:-CBf 22)
ddec ) %(Td L) V.AhU o-r)  ep
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Spectral factorization
Computation of
controller parameters

Parameter estimation

Filtered + Filtered +
input output
enp
Filter Filter
y ‘F_J .
v 13 o y
*7 Controller __’? . |1 Nonlinear >
process
v

Fig. 3. Adaptive control scheme.

with initial conditions ¢A(0) = cj, cg(0) = c§, TL(0) = T%,
and T(0) = T¢. Here, ¢ is time, ¢ are concentrations, T
are temperatures, V are volumes, p are densities, ¢p are
specific heat capacities, @ are volumetric flow rates, A,
is the heat exchange surface area, and U is the heat
transfer coefficient. The subscripts r denote the reac-
tant mixture, c the coolant, f feed (inlet) values and the
superscript s the steady-state values.

The reaction rates and the reaction heat are ex-
pressed as

._EJ_ .
kj =k0jexp RT ,j=12 25)

r

hr = hlkch + hzszB (26)
where %, are pre-exponential factors, E are activation
energies, and & are reaction enthalpies. The values of
all parameters, feed values, and steady-state values are
given in Table 1.

The aim is to control temperature of reaction mix-
ture by flow rate of coolant. For purposes of control
synthesis, the controlled variable and the control vari-
able are defined as

Q.- 0;

c

yO=T.(0)-T; ,u(®)=10 @7

These expressions enable to obtain variables of ap-
proximately the same magnitude.

The adaptive control system is shown in Fig. 3. Ac-
cording to the scheme, the adaptive control can be real-
ized in the following steps.

1. The ELM (1) of a controlled nonlinear process is
chosen using a previous analysis of the process dy-
namic behaviour.

2. Both control input and controlled output (27) enter
into filters (5).

3. The filtered variables inclusive of their derivatives
are measured at filter outputs, sampled and subse-
quently used for the ELM parameter estimation ac-
cording to eqn (8).

4. Coefficients of the stable polynomials g and n are
computed using formulas derived from spectral fac-
torizations (16) and (18).
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5. The controller parameters are computed from a set
of equations originating from solutions of eqns (19)
and (20) and periodically readjusted.

RESULTS AND DISCUSSION

For the adaptive control simulation, the following
changes of reference values were tracked: w() = 4-(1 -
exp (- 0.1-{t})) K for 0 min <¢ < 150 min, w(t) = - 2
K for 150 min < ¢ < 270 min and w(z) = 4 K for ¢ > 270
min. The boundary of the control input was used with-
in the range - 6.5 < u(¢) < 3.5. Using some results of the
CSTR previous dynamic analysis, the second-order ELM
expressed by the transfer function

6(s)= )b (28)
s tasta,
has been chosen. The unit weighting coefficient 1 and
various @ coefficients were used.
The control simulation consisted of the following
steps.
1. The filtered variables and their derivatives were
obtained from filters

Fe®) + 1y @) + coys(t) = y(@) 29

l.l',f (t) + (o5 lif(t) + Colr (t) = u(t) (30)
with filter parameters ¢; = 0.5, ¢g = 0.0625.
2. The ELM parameters [aq, a1, byl were recursively
estimated from the equation
Fe(td) = bous () — apyr(t) —aryr(ti) + €(ty)  (31)
in discrete time intervals ¢, = £ 7, with the sampling
period 7, = 0.5 min. Here, the identification proce-
dure based on the least-squares method [10] was
used.

3. The polynomials g and n in spectral factorizations
(16) and (18) have the form

g(s) = g3s° + gos® + g1s + g, (32)
gs)=s>+n;s + ng (33)
and their coefficients were computed as
Bo=vMby» & =288+ 30
g2:\/2g3g1+¢(af—2ao) , g3:‘/'¢?
ny=+ag . m=+2n,+a’-2a, (35)

4. The polynomial d = g n on the right sides of polyno-
mial equations (19) and (20) has the form
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354 E
At
352 q
X
= 350 Etal I ¢
348 | \;w/_ﬁ- 4
346 1 " ) J,
0 200 400 600 800

tmin

Fig. 4. 1DOF configuration - controlled temperature responses
to the reference value changes (—) around steady state
(- -) for ¢ = 0.25 (W) and ¢ = 25 (O).

d(s) =dss® +dys* +dgs® +dys®+dys+dy (36)

with coefficients

ds=gs3 de=gan + g 37)
ds=gang+g2n1+ 81
dy=ggno+g1n1+ g, di=g1n0+tgn 38)

do = go Mo

5. The degrees of polynomials g, r, and p were deter-
mined in accordance with relations (14) as

degg =2, degr=0, degp =2 (39)

and the transfer functions of the resulting control-
lers then take the form

2
@8 tq15tq

Q(s)= 3
s(pys®+ pys+ pg)

356 T T T M T
}
354 4
Wy
352 1
X
—
350 TTTTTTTTTT3
]
348 N E
o] 200 400 600 800
min

Fig. 6. Comparison of controlled temperature responses in 1DOF
(A) and 2DOF (X) configurations to the reference value
changes (—) around steady state (- -) for ¢ = 25.
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Fig. 5. 2DOF configuration — controlled temperature responses
to the reference value changes (—) around steady state
(- -) for ¢ = 0.25 (W) and ¢ = 25 (O).

,
R(s)= > 0
s(pas”+p1s+po)

(40)

The controller parameters were computed as

p2 =ds, p1 = dg— a1 P2, Po = dz—ay1p1—aope (41)

1 1
Q;v_z'b—(dz_axpo_aopl) , 4 =;‘(d1‘aopo),
0 0 (42)

1
go=——do, To=90

by

The control law for the 1DOF configuration is given
in the time domain as

poli +p1i+pot=qgé€+qié+qgoe (43)
and for the 2DOF configuration as

Dol +prii+poi =row—-qz¥-q1y—qoy (44)

0.020 T T v T ¥ v T

0.016
0.012 |

0.008

o o
o o
o o
(= N

o Hm’min)

-0.004

-0.008

-0.012 L .
0 20 40 60 80 100 120

timin

Fig. 7. 1DOF configuration ~ control input derivative responses
to references for ¢ = 0.25 (W) and ¢ = 25 (O).
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0.0086 T T T T T T

0.004

0.002

0.000 f+

0. fim’min’)

-0.002

-0.004 L 1 L L L
0 20 40 60 80 100 120

timin

Fig. 8. 2DOF configuration - control input derivative responses
to references for ¢ = 0.25 (W) and ¢ = 25 (O).

At the beginning of the identification procedure (ad-
aptation phase), a P-controller was used. Practical ex-
periences prove that an adaptation phase for n estimat-
ed parameters needs approximately 5 x n—8 x n identi-
fication steps. Here, the P-controller was used in 20 steps
for three estimated parameters.

The controlled output, and control input derivative
responses to references are shown in Figs. 4—9. The
control input derivative responses in Figs. 7 and 8 dem-
onstrate the influence of the coefficient ¢ (for u = 1)
upon the responses. An increasing value of ¢ strongly
reduces the control input derivatives. This fact is im-
portant with regard to a possible sensitivity of the con-
trolled process to control input changes.

The comparison between controlled output respons-
es in Fig. 6 shows that the control in the 2DOF config-
uration provides the responses of a better quality with-
out any overshoots to step references.

326

T /K

320 : : : ;
0 200 400 600 800 1000
356 : : : ,

354

TIK

352

350

o] 200 400 600 800
timin

1000

Fig. 10. Controlled temperature response (M) to the step refer-
ence value (--) and step load disturbance (—) in the 2DOF
configuration.
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Fig. 9. Comparison of control input derivative responses in 1DOF
(A) and 2DOF (X) configurations for ¢ = 25.

In addition, the presence of the integrating part in
the controller transfer function enables step load dis-
turbance attenuation. The controlled output response
in the 2DOF configuration to the step reference w(t) =
4 K and step disturbance W) = AT +(f) = + 2 Kis shown
in Fig. 10. The control result in the presence of the ran-
dom disturbance v(¢) is in Fig. 11.

CONCLUSION

A possible approach to the control design of nonlin-
ear processes was proposed in this paper. The present-
ed strategy enables to create an effective control algo-
rithm. This algorithm is based on an alternative exter-
nal linear model, which corresponds to the original
nonlinear model of the process. To derive the admissi-
ble controllers in the 1DOF and 2DOF control system
configurations, the polynomial approach and the LQ

3240 . T v

3235+ 4

323.01

T,IK

3225+

322.0
0
356 T T T

354

TIK

352

350

il 1 1 i
0 100 200 300 400
t/imin

Fig. 11. Controlled temperature response (RB) to the step refer-
ence value (- -) in the presence of random disturbance

(—).
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control technique are used. The parameters of result-
ing continuous-time controllers are periodically read-
justed according to recursively estimated parameters
of an external linear model. The controller parameters
can be tuned by the single selectable parameter ¢.

Both resulting control systems have been tested and
compared by computer simulation on the nonlinear
model of a CSTR. The results demonstrate the applica-
bility of the presented control strategy. It can be de-
duced that the described adaptive strategy is also suit-
able for other technological processes.
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SYMBOLS
A,  heat exchange surface area m?
c molar concentration mol m=
¢ specific heat capacity J kgt K1
E activation energy J mol™
h reaction enthalpy J mol™?
Q volumetric flow rate m?® min™!
3 time min
IR discrete time intervals min
T temperature K
u control variable
U  heat transfer coefficient Wm2K?
v load disturbance
1% volume m?
w reference signal
y controlled variable

Greek Letters

Q weighting coefficient

u weighting coefficient

P density kg m™
Tg sampling period min
190
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Superscripts

8 steady-state
conjugate polynomial

Subscripts
c cooling medium
r reaction mixture

f filtered variable, feed value
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