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In this work a CFD approach is described for modelling fast chemical reactions in turbulent
liquid flows. The relevant model developed for this purpose is composed of a core for the solution
of Navier—Stokes equations and extended with an appropriate turbulence model. Treatment of
additional (passive or active) scalars is performed on the basis of velocity fields obtained by means
of a “hydrodynamic core engine”. The developed CFD model was benchmarked on the so-called
backward-facing step problem and reasonably correlated with the values reported.
The turbulence model used to simulate micromixing phenomena was derived from the scalar
dissipation rate, which is obtained from the turbulent kinetic energy and its dissipation. For this
purpose, a multi-environment mixing model was developed. This model enables modelling of the flow
of nonpremixed environments of liquid phases, where chemical reactions do not occur, and also the
flow of environments with different reaction rates due to different temperatures and concentrations
of species involved.
Generally, in the case of modelling of N environments and S chemical species, the use of such
micromixing approach means evaluation ofN+(N − 2)S+N−1 additional scalar fields of individual
environments, temperatures, and species in these environments.
As a reaction system, a commonly used set of competitive-consecutive reactions (A + B →
2P A + P → 2R) occurring in a triple-jet channel reactor was considered. Simulations were
executed in 2D. Their results, however, need validation by experimental data.

Transport of species, momentum, and energy is
much faster in a turbulent regime of flow by molec-
ular diffusion. This is the reason, why chemical pro-
cess industry prefers rather these conditions than a
laminar regime. Mixing is also an important phe-
nomenon apart from considered hydrodynamic condi-
tions within the equipment (e.g. a reactor or combus-
tor). Thus, it is obvious that simulation of a process,
taking place in such equipment is based on superposi-
tion of both hydrodynamics and mixing on all scales
(including micro- and macromixing of all scalar vari-
ables).
The coupled system of differential equations de-

scribing the flow consists of Reynolds Averaged
Navier—Stokes equations and k − ε equations, which
could be treated in a cascade of two nonlinear iter-
ation cycles (k is the turbulent kinetic energy and
ε is its dissipation). In this study, the cycle of cou-
pled k − ε equations with implicit sources was nested
in an outer nonlinear cycle of Navier—Stokes equa-

tions based on calculated and updated turbulent vis-
cosities [1, 2]. Calculation of “isolated” variables was
then handled in defect-correction loops including sta-
bilization of the convective terms. In this work, the
stabilization is based on an appropriate advection al-
gorithm, proposed within the framework of the total
variation diminishing (TVD) method [1].
The method used to solve a mixing phenomenon

is not as straightforward as it was described for the
flow motion. First studies dealing with such modelling
stretch back to 1976, when the Eddy Dissipation Con-
cept (EDC) was developed [3]. Here, the solution was
obtained by means of two types of variables, namely
the volume fraction of species and the mixture frac-
tion. Then, the transport equations for the conserved
volume fraction of species were solved using limited
reaction rates reflecting the magnitude of mixing.
A more sophisticated method, taking into account

various scales of mixing, was reported by Baldyga [4],
who specified the multiple-time-scale (MTS) turbu-
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lent mixer model. This model aspired to express the
inertial-convective, viscous-convective, and viscous-
diffusive scales of mixing and their overall contribution
to the mixing. Recently this model had its substanti-
ation [5]. Even though, nowadays the effort is focused
on the probability density function (PDF) method.
This method attributes to individual scalars (e.g. the
volume fraction of species or the temperature) a new
dimension, which expresses the probability of mixed-
ness of the surrounding fluid. Essentially, the multi-
environment micromixing model (MEMM) described
here is the multi-environment presumed PDF model
with no reaction occurring in the 1st or the N-th en-
vironment. By means of this method, the scalar vari-
ables dependent on the micromixing are discretized to
a finite number of environments between which the
exchange of material and energy is governed by prob-
ability fluxes [6—8]. Then, for these probability fluxes
the corresponding parameters based on the Eulerian
mixing time should be estimated [6].
The goal of the work is to give an integrated insight

into both approaches, the simulation of the flow and
the reaction system, and outline the implementation
technique. The CFD codes developed for simulation of
reactive flows are referenced exclusively to commercial
software, where the additional features enabling the
simulation of reactive flows are carried out by user-
defined functions. By the present work and the pro-
vided references the creation of simulation software is
enabled for reactor engineering purposes constrained
to incompressible liquid flows.

THEORETICAL

The hydrodynamic engine solves the RANS equa-
tions coupled with the k− ε equations, which are also
mutually coupled. The system of the governing differ-
ential equations is defined as follows

∂u
∂t
+ u · ∇u−∇ ·

{
−

(
p+
2
3
k

)
I+

+ (νturb + ν)
[
∇u+ (∇u)T

]}
= f (1)

∇ · u = 0 (2)

∂k

∂t
+∇ · (k u− dk∇k) + γk−ε k = Pk (3)

∂ε

∂t
+∇ · (εu− dε∇ε) + C2 γk−ε ε = C1γk−ε Pk (4)

where

p =
P pressure

ρ
dk =

νturb
σk
+ ν

dε =
νturb
σε
+ ν (5)

γk−ε =
ε

k
νturb = cµ

k2

ε

Pk =
νturb
2

∣∣∣∇u+ (∇u)T∣∣∣2 (6)

with the following parameters values: cµ = 0.09, C1 =
1.44, C2 = 1.92, σk = 1.0, and σε = 1.3.
It is important to remark that the equations of k

and ε are strongly coupled and therefore, the computa-
tion is nonlinear. Furthermore, diffusion, reaction, and
source terms are nonnegative for nonnegative initial
conditions of both scalar variables, which implies that
their discretization has to be positivity-preservation.
Eqns (3) and (4) are written according to the repre-
sentation proposed in [2]. The author found that for
the positivity-preservation more important is the pos-
itivity of the lagged coefficients, i.e. the negative val-
ues of k and ε. Generally, this concept is based on
the limitation of the mixing length, turbulent eddy
viscosity, and turbulent kinetic energy in the indi-
vidual defect-correction steps (see [1]). Considering
positivity-preservation, discretization of the convec-
tive terms is suitable to perform with the TVD tech-
nique [1], which guarantees positivity of the converged
values and not that of the intermediate solution val-
ues.
For the velocity n ·u = 0, in addition to the inflow

and outflow conditions, also the no-penetration wall
function condition is imposed, as originally proposed
by Launder and Spalding [11]. This internal boundary
condition is imposed at a distance δ from the solid
wall, Γδ, taking into account the fact that the compu-
tational domain is reduced by width of the boundary
layer δ{

(νturb + ν)
[
∇u+ (∇u)T

]}
· t = −u2τ

u
|u| (7)

at the solid wall, Γδ. In eqn (7) uτ is the friction ve-
locity, which is defined by the following relationship

|u| − uτ

(
1
κ
log y+ + 5.5

)
= 0 (8)

for 20 ≤ y+ ≤ 100.
Since this boundary condition is implicit with re-

spect to the friction velocity, it is solved iteratively by
the Newton’s method. For y+ it holds

y+ =
uτδ

ν
(9)

within the range 20 ≤ y+ ≤ 100, and

uτ =

√
ν |u|
δ

(10)

for y+ < 20.
At the solid wall, Γδ, the empirical boundary con-

ditions for k and ε are the following

k =
u2τ√
cµ

ε =
u3τ
κ δ

(11)
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It should be noted that eqns (7—11) represent the
standard wall function [11].
For the inflow and outflow the values for u, k, and

ε are given by the following

u = g k = cbc |u|2 ε = cµ
k3/2

l0
at Γinflow (12)

n ·
{
−

(
p+
2
3
k

)
I+ (νturb + ν)

[
∇u+ (∇u)T

]}
= 0

n · ∇ε = 0 n · ∇k = 0 at Γoutflow (13)

which reflects the fact that in most cases the simula-
tions of unsteady flows are initiated from motionless
state, where no turbulence is present. The approach
used here (corresponding to [1]) is based on a two-
stage simulation. In the first stage, which can be char-
acterized as a laminar flow, the turbulence transport
equations are not computed. After reaching a certain
time tk−ε during this laminar computation the turbu-
lence variables are initiated by the following equations

k0 =

(
ν0
l0

)2
ε0 = cµ

k3/2

l0
at t = tk−ε (14)

Then, the time tk−ε is characterized as the ini-
tial time for the turbulence variables computation and
consequently, for the second stage of the modelling of
flow.
Micromixing defined by the MEMM approach re-

quires modelling of the individual environments and
estimation of the volume fraction of individual species
in all these environments. In general, if N is the num-
ber of environments and S is the number of species a
coupled system of additionalN+N.S+N scalar trans-
port equations (N for environments, N.S for species,
and N for temperatures) is considered. The final num-
ber of equations will be adjusted at the end of the
description of the model. The above-mentioned trans-
port equations will be expressed in terms of pi (x, t)

and s(i)α (x, t) in order to satisfy the conservation of
probability. Each environment corresponds to a dis-
cretization of the composition PDF in a finite set of
delta functions

fϕ (ψ;x, t) =
N∑

i=1

pi (x, t)

[
S∏

α=1

ζ
(
ψα − φ(i)α (x, t)

)]

(15)
where the product takes into account all species and
the sum considers all environments. Then, the trans-
port equations are as follows

∂pi

∂t
+ u · ∇pi = ∇ · (dturb∇pi) +Gi (p) (16)

∂s
(i)
α

∂t
+ u · ∇s(i)α =

∇ ·
(
dturb∇s(i)α

)
+M (i)

α

(
p, s(n)

)
+ piSα

(
ϕ(i)

)
(17)

where Gi (p) and M
(i)
α

(
p, s(n)

)
are the micromixing

functions defined in terms of probability fluxes ri.
Summation of these terms over all environments has
to be equal to zero, because these source terms are
responsible just for the exchange of mass between the
environments. Thus, they cannot affect the global con-
servation of mass. Definition of probability fluxes, for
four environments is presented below

r1 = γ p1 (1− p1)

r2 = γ p2
r3 = γ p3
r4 = γ p4 (1− p4)

(18)

The rate of micromixing, γ, can be computed as a
function of k and ε (Hjertager [13])

γ = Cφ
ε

k
(19)

The value of Cφ depends on the state of turbu-
lence development. The value of this parameter varies
within the range of 〈0.5, 1.0〉 (see [7] and [13]), where
the value of 1.0 is assumed in the case of developed
turbulence, and the value of 0.5 is proposed in regions
where erosion of the velocity field takes place (injec-
tion points).

 

Fig. 1. Mass balance with respect to the micromixing fluxes
for 4 environments.

Then, based on the mass balance shown in Fig. 1,
the micromixing functions are defined as follows

G1 = − r1

G2 = + r1 − r2 + r3
G3 = + r2 − r3 + r4
G4 = − r4

(20)

M(1)α = − r1ϕ
(1)
α

M(2)α = + r1ϕ(1)α − r2ϕ
(2)
α + r3ϕ

(3)
α

M(3)α = + r2ϕ
(2)
α − r3ϕ

(3)
α + r4ϕ

(4)
α

M(4)α = − r4ϕ
(4)
α

(21)

The definition of the micromixing terms by eqns (20)
and (21) neglects the effect of the terms used to elim-
inate the so-called spurious dissipation. This assump-
tion is based on the work reported by Piton et al. [12],
who modelled a tubular reactor. For the relationship
between the volume fraction of species α in the en-

vironment i, s(i)α , and the local concentration of this
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scalar variable, ϕ(i)α , and its mean value, ϕα =
N∑

i=1
s
(i)
α ,

the following equation holds

ϕ(i)α =
s
(i)
α

pi
i = 2, 3, 4 (22)

Starting from eqns (16) and (17), omitting the
source term, S1, and defining ξ = ϕ1, the mixture frac-
tion variance ξ′2 could be computed from the equation

ξ′2 =
N∑

i=1

(
s(i)

)2
pi

− ξ2 (23)

Application of the MEMM for reacting flows does
not affect only the composition but also the temper-
ature field, which means modelling of N temperature
fields for each individual environment. The exchange
of heat between the neighbouring cells is also defined
by the same probability fluxes as in the case of the
volume fractions. The “temperature probabilities” are
calculated in the environments by means of the follow-
ing transport equation

∂τ (i)

∂t
+ u · ∇τ (i) =

∇ ·
(
aturb∇τ (i)

)
+O(i) (p,T) + pi Q

i
(
T (i)

)
for i = 1, . . . N (24)

This transport equation is written for the prod-
uct of the temperature T (i) and the environmental
fraction pi in the given environment i. In eqn (24)
O(i) (p,T) is the contribution of the micromixing
source term and its definition is as follows

O(1)α =− r1T
(1)
α

O(2)α =+ r1T (1)α − r2T
(2)
α + r3T (3)α

O(3)α = + r2T
(2)
α − r3T

(3)
α + r4T

(4)
α

O(4)α = − r4T
(4)
α

(25)

Then, the mean local temperature is calculated
from the following equation

T =
N∑

i=1

piT
(i) =

N∑
i=1

τ (i) (26)

For the reactive flows in eqn (24) the term
piQ

i
(
T (i)

)
expresses the contribution of the released

reaction heat multiplied with the environmental frac-
tion for the given environment. Its definition depends
on the kinetics of the reaction.
Calculation of all “environmental” scalars at non-

reactive flow conditions should satisfy the overall con-
servation of given variable. For this reason, it is nec-
essary to check the sum for all of these variables and

implement a suitable mechanism to satisfy the mean
scalar conservation requirement. For the environmen-
tal fraction this mechanism is implemented by means
of renormalization, i.e.

pl+1j =
plj

N∑
i

pli

(27)

where l+1 represents the updated environmental frac-
tion values. For the volume fraction of species the
renormalization is calculated as follows

sα,l+1
j =

sβ,l
j pl+1j

S∑
β=1

sβ,l
j

(28)

The temperature cannot be treated directly in that
manner as the previous scalars. However, because the
micromixing fluxes for these variables cancel out in
case of summing up all the N transport equations, it
is possible to calculate the mean temperature 〈T 〉. The
source term in this newly introduced additional scalar
equation is formed exclusively by the environmental
chemical production terms. Then, the mean tempera-
ture calculated in this way is used in the renormaliza-
tion computation as

τ l+1j =
τ lj 〈T 〉
N∑
i

τ li

(29)

Since neither influence of temperature nor effect
of concentration of species on the density or viscos-
ity was assumed, hydrodynamic calculations could be
implemented separately from the micromixing-based
scalar variables. Such an assumption leads to the cal-
culation algorithm outlined in Fig. 2. According to
this scheme, the k− ε equations are inserted after the
nonlinear computation of the velocity components. As
the convergence criterion of the outer iteration cycle
the norm of relative changes and the norm of defects
of the velocity components were utilized.
Now, let us go back to the determination of the

final number of equations subjected to simulation
within the MEMM framework. Taking into account
that there are not other species present in the 1st (N -
th) environment except species A (B), and the volume
fraction of species A (B) is therefore equal to the vol-
ume fraction of this 1st (N -th) environment, the num-
ber of equations decreases to N +(N − 2) S+N . The
fact that the “environmental” temperatures of the 1st
and N-th environment are calculated directly by the
environmental fractions of these environments modi-
fies the number of equations to N+(N − 2) S+N−2.
We can see that this number finally increased by one
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Fig. 2. The sketch of the calculation algorithm.

(Fig. 2), because of the calculation of the mean tem-
perature required for the temperature renormaliza-
tion.
On the contrary to other standard approaches [6,

8] the algorithm presented here takes into account the
calculation of all nonzero environmental fractions and
the volume fractions of species. In this way, none of
the variables is calculated by subtraction from unity.
Thus, a potential source of accumulation of a numer-
ical error is avoided.

RESULTS AND DISCUSSION

As mentioned above, the development of the mi-
cromixing model requires first of all a hydrodynamic
engine, which provides the fields of the turbulent ki-
netic energy k and its dissipation ε. In this work the
upgraded FEATFLOW program was used for this pur-
pose. The program was tested on a benchmark prob-
lem with the aim to validate the turbulence model.
The chosen benchmark was the same as that used
by some other research groups [1, 9, 14—16]. This
benchmark corresponds to the so-called “backward-
facing step”. The geometry of this problem is shown
in Fig. 3, in which also the boundary conditions are
given. The characteristic Reynolds number for this
benchmark computation is based on the characteris-
tic length H and the mean upstream velocity v0, and
is equal to 44000. Then, justification of the hydrody-
namic solver is obtained from comparisons of several
chosen variable distributions with those reported by
other researchers and from the length of the recircula-
tion zone, which is predicted to be 7.1 H [15] for the
given benchmark computation.
The results of simulation obtained at steady-state

conditions are presented in Table 1. In order to obtain

Fig. 3. Problem description of the backward-facing step.

Table 1. Calculated Recirculation Lengths for the Two Dif-
ferent Meshes, TVD Limiters (MC and Superbee),
Boundary Layer Distances (δ = 0.050 and 0.025), and
Mesh Levels 4—7*

δ Limiter Mesh level xr
1st mesh 2nd mesh

4 5.47 6.16

MC
5 6.47 6.88
6 6.87 7.19
7 – 7.29*

0.050
4 5.28 6.03

SB 5 6.27 6.72
6 6.74 7.05

4 5.7 6.34
0.025 MC 5 6.78 7.09

6 7.14 7.36

*Result from UNI-Dortmund/Department of Applied Mathe-
matics. δ – width of the boundary layer, xr – length of the
recirculation zone.

Fig. 4. Two different coarse meshes used for the investigation
of mesh independence.

mesh-independent solution profiles two coarse meshes
were used (Fig. 4) with three/four subsequent multi-
grid levels (4—7). Additionally, the calculations were
performed with two different TVD limiters (MC and
Superbee) for the following values of parameters: δ =
0.05 and 0.025, cbc = 0.025, ν0 = 10−3, l0 = 0.02, and
lmax = 1.0.
The length of the recirculation zone was calculated

by means of the streamline field, where the length
of the “last” streamline belonging to the recircula-
tion was measured. A brief summary of the performed
simulations with respect to the recirculation zone is
listed in Table 1. The parameters, for which the re-
circulation length was calculated, are also explained
in the caption to this table. In Table 2 are presented
the numbers of generated elements for the two coarse
meshes depending on the considered multi-grid com-
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Table 2. Number of Elements Generated for the Two Coarse
Meshes with Respect to the Multi-Grid Level Con-
sidered

Multi-grid Number of elements Number of elements
level for the 1st mesh for the 2nd mesh

4 3584 3200
5 14336 12800
6 57344 51200
7 – 204800*

*Mesh generated by UNI-Dortmund/Department of Applied
Mathematics.

Fig. 5. Streamlines for the backward-facing step for Re =
44000. a) FEATFLOW calculated, b) calculated with
anisotropic viscosity with relative error within 3 % [15],
c) calculated by high-Re number model with wall func-
tions [16].

putation level. The comparison of the calculated fields
for steady state is based on the streamlines (Fig. 5a),
distribution of the turbulent kinetic energy and tur-
bulent viscosity (Figs. 7a and c) with the same vari-
able distributions published for the given benchmark
(Figs. 5b and c for the streamlines and Figs. 7b and d
for the turbulent kinetic energy and turbulent viscos-
ity) [1, 9, 14, 15]. A supplemental comparison with the
presented reference data was carried out by means of
the streamline velocity profiles at the distance of 5.33
H from the step corresponding to that given by Kim
et al. [14] (Fig. 6). As far as a very good agreement
was found with the presented references, the modified
FEATFLOW program proved to be useful in simula-
tions of Reynolds Averaged Navier—Stokes equations.
The second task of this work is the testing of the

MEMM approach. Prior to the simulation of the tur-
bulent reactive incompressible flow, the micromixing

Fig. 6. Streamline velocity components distribution at the po-
sition 5.33 H from the step for Re = 44000. ◦ Experi-
mental [14], ———— FEATFLOW calculated.

model was validated for the case of mixing of two ma-
terial streams, for which the justness and the accu-
racy of the output stream can be verified [10]. For
this reason, mixing of two inflow streams between two
infinitely wide and long plates (see Fig. 8a) was sim-
ulated with chemical reactions. In Fig. 8b is given the
generated coarse mesh for this 2D problem. Then, the
computation was based on the multi-grid approach
up to the fifth level, what involves the generation
of 17408 elements. Corresponding to Fig. 8b, stricter
size requirements were placed on the elements in the
vicinity of the mixing region of the inflowing streams.
The highest applied fifth multi-grid level proved to
be high enough to provide results with a satisfactory
mesh-independent property. This fact can be mostly
expressed via the fifth multi-grid level distribution of ε
projected to the fourth level mesh (see Fig. 9a). From
the mentioned figure it can be seen that the one level
lower (fourth) generated mesh is also able to resolute
the steep distribution of this chosen variable in the
critical region.
The velocity boundary conditions for this reactive

flow problem were applied by the following way

v1st streamx

v2nd streamx

=
2
1

(30)

in order to ensure that the volumetric flow of both
streams was equal. The Reynolds number for this
problem, based on the characteristic length H and
streamline velocity v2nd streamx , was 99000. The calcu-
lated steady-state velocity profile for this problem is
presented in Fig. 9c and the distribution of the mi-
cromixing rate, γ, derived from the turbulent kinetic
energy and its dissipation is presented in Fig. 9b. The
figure reveals that this variable has also a very steep
distribution in the region, where the feeds are intro-
duced. Thus, the generation of an appropriate coarse
mesh for the upcoming MEMM calculation was almost
essential.
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Fig. 7. Distribution of the turbulent
kinetic energy (a and b) and
turbulent viscosity (c and d)
for Re = 44000. b) and d) are
experimental data measured by
Ilinca et al. [17] and a) and
c) are FEATFLOW calculated
values.

 

Fig. 8. Problem description of the 2D mixing channel. a) Geometry of the computational domain and the configuration of the
streams, b) the used coarse mesh.

 

Fig. 9. Distribution of: a) dissipation of turbulent kinetic energy ε in the mixing region, b) micromixing rate function γ in the
mixing region; at steady-state regime for reacting flow, c) streamline velocity component vx.

Finally, a reacting system comprising the following
consecutive-competitive reaction schemes

A + B→ 2P (A)

A+ P → 2R (B)

was investigated. It was assumed that the pre-
exponential value in the Arrhenius-defined reaction
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Fig. 10. Distribution of temperature and volume fractions of species at steady-state regime for reacting flow in a 2D channel
reactor.

rate for reaction (B) was 10 times smaller than the
pre-exponential factor of the reaction (A). The depen-
dence of physicochemical properties on the tempera-
ture was not taken into account for this model system.
However, in case of modelling real problems, the ef-
fect of these dependences should not be neglected. As
shown in Fig. 10, chemical reactions occur in the first
half of the planar triple-jet reactor and reach a steady
vertical profile in the second half of the reactor. Fi-
nally, the authors of this work would like to stress that
the presented results (corresponding to the turbulent
reactive flow) were obtained for a model system and
were not compared with experimental data. For this
reason they should be considered with an adequate
reserve.

Acknowledgements. This work was supported by the Slovak
Scientific Grant Agency. Grant No. VEGA 1/1377/04.

SYMBOLS

C constant, parameter
d diffusion coefficient, thermal diffusivity
f right-hand side (0 for incompressible flows)
g prescribed boundary value
k turbulent kinetic energy
l length
M micromixing production term
n normal vector
N number of environments
O micromixing production term for the tem-

perature
p environment probability vector
P pressure pressure
p density divided by pressure
P production term
r probability flux vector
Re Reynolds number

s volume weighted fraction of species in a
given environment

S number of species
S chemical reaction production term
t time
t unit vector
T environment temperature
〈T 〉 mean temperature
u velocity
y+ wall distance

Greek Letters

δ width of the boundary layer
ε dissipation of the turbulent kinetic energy
ϕ volume fraction of species in a given

environment
γ rate of micromixing
γk−ε ratio of ε to k
κ von Kármán constant
ν kinematic viscosity
ρ density
τ volume weighted temperature
ξ′2 mixture fraction variance
ζ Dirac delta function

Subscripts

0 initial
α, β species
i, j environment
turb turbulent variable
τ shear stress

Superscripts

(i) environment index
l iteration index
T transposed
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